Eigenvalues and invariants of tensors

作者: Liqun Qi

DOI: 10.1016/J.JMAA.2006.02.071

关键词:

摘要: Abstract A tensor is represented by a supermatrix under co-ordinate system. In this paper, we define E-eigenvalues and E-eigenvectors for tensors supermatrices. By the resultant theory, E-characteristic polynomial of tensor. An E-eigenvalue root polynomial. regular case, complex number an if only it We convert to monic show that coefficients are invariants tensor, i.e., they invariant system changes. call them principal The maximum mth order n-dimensional function m n. denote d ( , n ) 1 = 2 ⩾ 3 ⩽ − + ⋯ . also rank All real eigenvectors associated with nonzero in subspace dimension equal its rank.

参考文章(21)
Liqun Qi, Kok Lay Teo, Multivariate Polynomial Minimization and Its Application in Signal Processing Journal of Global Optimization. ,vol. 26, pp. 419- 433 ,(2003) , 10.1023/A:1024778309049
W. Ku, Explicit criterion for the positive definiteness of a general quartic form IEEE Transactions on Automatic Control. ,vol. 10, pp. 372- 373 ,(1965) , 10.1109/TAC.1965.1098177
Izrailʹ Moiseevich Gelʹfand, Andrey V. Zelevinsky, M. M. Kapranov, Discriminants, Resultants, and Multidimensional Determinants ,(2008)
Tong Zhang, Gene H. Golub, Rank-One Approximation to High Order Tensors SIAM Journal on Matrix Analysis and Applications. ,vol. 23, pp. 534- 550 ,(2001) , 10.1137/S0895479899352045
Lieven De Lathauwer, Bart De Moor, Joos Vandewalle, On the Best Rank-1 and Rank-(R1 ,R2 ,. . .,RN) Approximation of Higher-Order Tensors SIAM Journal on Matrix Analysis and Applications. ,vol. 21, pp. 1324- 1342 ,(2000) , 10.1137/S0895479898346995
N. K. BOSE‡, R. W. NEWCOMB, Tellegen's theorem and multivariable realizability theory† International Journal of Electronics. ,vol. 36, pp. 417- 425 ,(1974) , 10.1080/00207217408900421
M.A. Hasan, A.A. Hasan, A procedure for the positive definiteness of forms of even order IEEE Transactions on Automatic Control. ,vol. 41, pp. 615- 617 ,(1996) , 10.1109/9.489287
E. Jury, M. Mansour, Positivity and nonnegativity conditions of a quartic equation and related problems IEEE Transactions on Automatic Control. ,vol. 26, pp. 444- 451 ,(1981) , 10.1109/TAC.1981.1102589
Liqun Qi, Eigenvalues of a real supersymmetric tensor Journal of Symbolic Computation. ,vol. 40, pp. 1302- 1324 ,(2005) , 10.1016/J.JSC.2005.05.007