Robust Sparse Regression under Adversarial Corruption

作者: Constantine Caramanis , Yudong Chen , Shie Mannor

DOI:

关键词:

摘要: We consider high dimensional sparse regression with arbitrary - possibly, severe or coordinated errors in the covariates matrix. are interested understanding how many corruptions we can tolerate, while identifying correct support. To best of our knowledge, neither standard outlier rejection techniques, nor recently developed robust algorithms (that focus only on corrupted response variables), recent for dealing stochastic noise erasures, provide guarantees support recovery. As show, natural brute force algorithm that takes exponential time to find subset data and columns, yields smallest error. We explore power a simple idea: replace essential linear algebraic calculation inner product counterpart cannot be greatly affected by controlled number arbitrarily points: trimmed product. three popular uncorrupted setting: Thresholding Regression, Lasso, Dantzig selector, show counterparts obtained using provably robust.

参考文章(27)
Constantine Caramanis, Yudong Chen, Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery international conference on machine learning. pp. 383- 391 ,(2013)
Gilad Lerman, Michael McCoy, Joel A. Tropp, Teng Zhang, Robust Computation of Linear Models, or How to Find a Needle in a Haystack Defense Technical Information Center. ,(2012) , 10.21236/ADA563093
Mathieu Rosenbaum, Alexandre B. Tsybakov, Improved Matrix Uncertainty Selector arXiv: Statistics Theory. pp. 276- 290 ,(2013) , 10.1214/12-IMSCOLL920
Constantine Caramanis, Sujay Sanghavi, Huan Xu, Yudong Chen, Robust Matrix Completion and Corrupted Columns international conference on machine learning. pp. 873- 880 ,(2011)
Yiyuan She, Art B. Owen, Outlier Detection Using Nonconvex Penalized Regression Journal of the American Statistical Association. ,vol. 106, pp. 626- 639 ,(2011) , 10.1198/JASA.2011.TM10390
Scott Shaobing Chen, David L. Donoho, Michael A. Saunders, Atomic Decomposition by Basis Pursuit SIAM Journal on Scientific Computing. ,vol. 20, pp. 33- 61 ,(1998) , 10.1137/S1064827596304010
Huan Xu, Constantine Caramanis, Shie Mannor, Outlier-Robust PCA: The High-Dimensional Case IEEE Transactions on Information Theory. ,vol. 59, pp. 546- 572 ,(2013) , 10.1109/TIT.2012.2212415
Huan Xu, Constantine Caramanis, Sujay Sanghavi, Robust PCA via Outlier Pursuit IEEE Transactions on Information Theory. ,vol. 58, pp. 3047- 3064 ,(2012) , 10.1109/TIT.2011.2173156
Elvezio M. Ronchetti, Peter J. Rousseeuw, Werner A. Stahel, Frank R. Hampel, Robust statistics: the approach based on influence functions ,(1986)
Vassilis Kekatos, Georgios B. Giannakis, From Sparse Signals to Sparse Residuals for Robust Sensing IEEE Transactions on Signal Processing. ,vol. 59, pp. 3355- 3368 ,(2011) , 10.1109/TSP.2011.2141661