The KDV Hierarchy and Associated Trace Formulas

作者: F. Gesztesy , R. Ratnaseelan , G. Teschl

DOI: 10.1007/978-3-0348-9035-9_6

关键词:

摘要: A natural algebraic approach to the KdV hierarchy and its algebro-geometric finite-gap solutions is developed. In addition, a new derivation of associated higher-order trace formulas in connection with one-dimensional Schrodinger operators presented.

参考文章(39)
ED Belokolos, AI Bobenko, VZ Enol'ski, AR Its, VB Matveev, Algebro-geometric approach to nonlinear integrable equations Springer-Verlag. ,(1994)
David Mumford, Tata Lectures on Theta I ,(1982)
Barry Simon, Spectral analysis of rank one perturbations and applications CRM Proceedings and Lecture Notes. pp. 109- 149 ,(1995) , 10.1090/CRMP/008/04
F. Gesztesy, R. Weikard, Spectral Deformations and Soliton Equations Mathematics in Science and Engineering. ,vol. 192, pp. 101- 139 ,(1993) , 10.1016/S0076-5392(08)62376-0
Raghavan Narasimhan, Compact Riemann Surfaces ,(1992)
Evans M. Harrell, William F. Ames, J. V. Herod, Differential equations with applications to mathematical physics Academic Press. ,(1993)
Adolf Krazer, Lehrbuch der Thetafunktionen ,(1970)
Boris Moiseevich Levitan, Inverse Sturm-Liouville Problems ,(1987)