Progressive Strategies for Monte-Carlo Tree Search

作者: GUILLAUME M. J-B. CHASLOT , MARK H. M. WINANDS , H. JAAP VAN DEN HERIK , JOS W. H. M. UITERWIJK , BRUNO BOUZY

DOI: 10.1142/S1793005708001094

关键词:

摘要: Monte-Carlo Tree Search (MCTS) is a new best-first search guided by the results of Monte-Carlo simulations. In this article, we introduce two progressive strategies for MCTS, called …

参考文章(19)
Jonathan Schaeffer, GAME OVER: BLACK TO PLAY AND DRAW IN CHECKERS ICGA Journal. ,vol. 30, pp. 187- 197 ,(2007) , 10.3233/ICG-2007-30402
Tristan Cazenave, PLAYING THE RIGHT ATARI ICGA Journal. ,vol. 30, pp. 35- 42 ,(2007) , 10.3233/ICG-2007-30104
Guillaume Chaslot, Bruno Bouzy, Bayesian Generation and Integration of K-nearest-neighbor Patterns for 19x19 Go. computational intelligence and games. ,(2005)
Rémi Coulom, COMPUTING “ELO RATINGS” OF MOVE PATTERNS IN THE GAME OF GO computer games. ,vol. 30, pp. 198- 208 ,(2007) , 10.3233/ICG-2007-30403
B. Bouzy, B. Helmstetter, MONTE-CARLO GO DEVELOPMENTS advances in computer games. pp. 159- 174 ,(2004) , 10.1007/978-0-387-35706-5_11
Levente Kocsis, Csaba Szepesvári, Bandit Based Monte-Carlo Planning Lecture Notes in Computer Science. pp. 282- 293 ,(2006) , 10.1007/11871842_29
Rémi Coulom, Efficient selectivity and backup operators in Monte-Carlo tree search annual conference on computers. pp. 72- 83 ,(2006) , 10.1007/978-3-540-75538-8_7
Richard Sutton, Martin Müller, David Silver, Reinforcement learning of local shape in the game of go international joint conference on artificial intelligence. pp. 1053- 1058 ,(2007)
H.Jaap van den Herik, Jos W.H.M. Uiterwijk, Jack van Rijswijck, Games solved: now and in the future Artificial Intelligence. ,vol. 134, pp. 277- 311 ,(2002) , 10.1016/S0004-3702(01)00152-7
J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M. Muller, R. Lake, P. Lu, S. Sutphen, Checkers Is Solved Science. ,vol. 317, pp. 1518- 1522 ,(2007) , 10.1126/SCIENCE.1144079