Anisotropic Laplace-Beltrami Operators for Shape Analysis

作者: Mathieu Andreux , Emanuele Rodolà , Mathieu Aubry , Daniel Cremers

DOI: 10.1007/978-3-319-16220-1_21

关键词:

摘要: This paper introduces an anisotropic Laplace-Beltrami operator for shape analysis. While keeping useful properties of the standard operator, it variability in directions principal curvature, giving rise to a more intuitive and semantically meaningful diffusion process. Although benefits have already been noted area mesh processing (e.g. surface regularization), focusing on Laplacian itself, rather than process induces, opens possibility effectively replace omnipresent many analysis methods. After providing mathematical formulation this new we derive practical implementation discrete meshes. Further, demonstrate effectiveness our when employed conjunction with different methods segmentation matching.

参考文章(26)
Pierre Fillard, Vincent Arsigny, Nicholas Ayache, Xavier Pennec, A riemannian framework for the processing of tensor-valued images Lecture Notes in Computer Science. pp. 112- 123 ,(2005) , 10.1007/11577812_10
Alexander Bronstein, Michael Bronstein, Ron Kimmel, Numerical geometry of non-rigid shapes ,(2007)
Raif M. Rustamov, Laplace-Beltrami eigenfunctions for deformation invariant shape representation symposium on geometry processing. pp. 225- 233 ,(2007) , 10.5555/1281991.1282022
Mark Meyer, Mathieu Desbrun, Peter Schröder, Alan H. Barr, Discrete Differential-Geometry Operators for Triangulated 2-Manifolds VisMath. pp. 35- 57 ,(2003) , 10.1007/978-3-662-05105-4_2
Ulrich Pinkall, Konrad Polthier, Computing Discrete Minimal Surfaces and Their Conjugates Experimental Mathematics. ,vol. 2, pp. 15- 36 ,(1993) , 10.1080/10586458.1993.10504266
Emanuele Rodola, Samuel Rota Bulo, Thomas Windheuser, Matthias Vestner, Daniel Cremers, Dense Non-rigid Shape Correspondence Using Random Forests computer vision and pattern recognition. pp. 4177- 4184 ,(2014) , 10.1109/CVPR.2014.532
Roee Litman, Alexander M. Bronstein, Michael M. Bronstein, SMI 2011: Full Paper: Diffusion-geometric maximally stable component detection in deformable shapes Computers & Graphics. ,vol. 35, pp. 549- 560 ,(2011) , 10.1016/J.CAG.2011.03.011
Mathieu Desbrun, Mark Meyer, Peter Schröder, Alan H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow international conference on computer graphics and interactive techniques. pp. 317- 324 ,(1999) , 10.1145/311535.311576
M.J. Black, G. Sapiro, D.H. Marimont, D. Heeger, Robust anisotropic diffusion IEEE Transactions on Image Processing. ,vol. 7, pp. 421- 432 ,(1998) , 10.1109/83.661192
Fernando de Goes, Beibei Liu, Max Budninskiy, Yiying Tong, Mathieu Desbrun, Discrete 2-Tensor Fields on Triangulations symposium on geometry processing. ,vol. 33, pp. 13- 24 ,(2014) , 10.1111/CGF.12427