The Computational Complexity of Some Problems of Linear Algebra

作者: Jonathan F Buss , Gudmund S Frandsen , Jeffrey O Shallit , None

DOI: 10.1006/JCSS.1998.1608

关键词:

摘要: We consider the computational complexity of some problems dealing with matrix rank. Let E, S be subsets a commutative ring R. x1, x2, ?, xt variables. Given M=M(x1, xt) entries chosen from E?{x1, xt}, we want to determine maxrankS(M)=max(a1, a2, at)?St rank M(a1, at) and minrankS(M)=min(a1, at). There are also variants these that specify more about structure M, or instead asking for minimum maximum rank, they ask if there is substitution variables makes invertible noninvertible. Depending on S, which variant studied, can range polynomial-time solvable random NP-complete PSPACE-solvable unsolvable. An approximation version minrank problem shown MAXSNP-hard.

参考文章(28)
László Lovász, On determinants, matchings, and random algorithms. fundamentals of computation theory. pp. 565- 574 ,(1979)
Richard A. Brualdi, Shmuel Friedland, Victor Klee, Combinatorial and Graph-Theoretical Problems in Linear Algebra ,(2011)
Fernando Quadros Gouvêa, p-adic Numbers: An Introduction ,(2020)
Jean Berstel, Christophe Reutenauer, Rational Series and Their Languages ,(1988)
Leslie G. Valiant, Graph-theoretic arguments in low-level complexity mathematical foundations of computer science. pp. 162- 176 ,(1977) , 10.1007/3-540-08353-7_135
L. Egidi, The complexity of the theory of p-adic numbers Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science. pp. 412- 421 ,(1993) , 10.1109/SFCS.1993.366846
L. Egidi, A quantifier elimination for the theory of p -adic numbers Computational Complexity. ,vol. 7, pp. 205- 263 ,(1998) , 10.1007/S000370050011
Joel Friedman, A Note on Matrix Rigidity Combinatorica. ,vol. 13, pp. 235- 239 ,(1993) , 10.1007/BF01303207
D. Ierardi, Quantifier elimination in the theory of an algebraically-closed field Proceedings of the twenty-first annual ACM symposium on Theory of computing - STOC '89. pp. 138- 147 ,(1989) , 10.1145/73007.73020