Towards bone replacement materials from calcium phosphates via rapid prototyping and ceramic gelcasting

作者: A. Woesz , M. Rumpler , J. Stampfl , F. Varga , N. Fratzl-Zelman

DOI: 10.1016/J.MSEC.2005.01.014

关键词:

摘要: Abstract Biomimetic porous scaffolds made of calcium phosphate mineral are promising structures to develop bone replacement materials. In order fabricate with a strut size 450 μm, we used stereolithographic technique which selectively polymerises photosensitive liquid resin by visible light produce casting moulds for ceramic gelcasting. These were filled water based thermosetting slurry solidifies inside the mould. After burning mould and sintering, hydroxylapatite designed, fully interconnected macroporosity obtained. The preosteoblastic cell line MC3T3-E1, derived from mouse calvariae, was test biocompatibility in culture experiments. cells seeded on immersed medium cultured 2 weeks. Thereafter scaffold fixed investigated histological methods. osteoblast-like found cover whole external internal surface scaffold, they embedded collagenous extracellular matrix. had particular tendency fill any crack or opening generally smooth exposed surfaces.

参考文章(48)
Susmita Bose, Jens Darsell, Howard L. Hosick, Lihua Yang, Dipak K. Sarkar, Amit Bandyopadhyay, Processing and characterization of porous alumina scaffolds. Journal of Materials Science: Materials in Medicine. ,vol. 13, pp. 23- 28 ,(2002) , 10.1023/A:1013622216071
S. M. Kenny, M. Buggy, Bone cements and fillers: a review. Journal of Materials Science: Materials in Medicine. ,vol. 14, pp. 923- 938 ,(2003) , 10.1023/A:1026394530192
C. Schwartz, P. Liss, B. Jacquemaire, P. Lecestre, P. Frayssinet, Biphasic synthetic bone substitute use in orthopaedic and trauma surgery: clinical, radiological and histological results. Journal of Materials Science: Materials in Medicine. ,vol. 10, pp. 821- 825 ,(1999) , 10.1023/A:1008944227417
M. Wang, L. J. Chen, J. Ni, J. Weng, C. Y. Yue, Manufacture and evaluation of bioactive and biodegradable materials and scaffolds for tissue engineering. Journal of Materials Science: Materials in Medicine. ,vol. 12, pp. 855- 860 ,(2001) , 10.1023/A:1012899318688
O. Gauthier, E. Goyenvalle, J.-M. Bouler, J. Guicheux, P. Pilet, P. Weiss, G. Daculsi, Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. Journal of Materials Science: Materials in Medicine. ,vol. 12, pp. 385- 390 ,(2001) , 10.1023/A:1011284517429
T-M G Chu, John W Halloran, Scott J Hollister, Stephen E Feinberg, None, Hydroxyapatite implants with designed internal architecture. Journal of Materials Science: Materials in Medicine. ,vol. 12, pp. 471- 478 ,(2001) , 10.1023/A:1011203226053
Y. Kuboki, H. Takita, D. Kobayashi, E. Tsuruga, M. Inoue, M. Murata, N. Nagai, Y. Dohi, H. Ohgushi, BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. Journal of Biomedical Materials Research. ,vol. 39, pp. 190- 199 ,(1998) , 10.1002/(SICI)1097-4636(199802)39:2<190::AID-JBM4>3.0.CO;2-K
Henry J. Mankin, Mark C. Gebhardt, L. Candace Jennings, Dempsey S. Springfield, William W. Tomford, Long-term results of allograft replacement in the management of bone tumors. Clinical Orthopaedics and Related Research. ,vol. 324, pp. 86- 97 ,(1996) , 10.1097/00003086-199603000-00011
Bong-Soon Chang, >>>inits>C.K.>>>fnm>Choon-Ki Lee, Kug-Sun Hong, Hyuk-Joon Youn, Hyun-Seung Ryu, Sung-Soo Chung, Kun-Woo Park, Osteoconduction at porous hydroxyapatite with various pore configurations Biomaterials. ,vol. 21, pp. 1291- 1298 ,(2000) , 10.1016/S0142-9612(00)00030-2
S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, CaO--P2O5--Na2O-based sintering additives for hydroxyapatite (HAp) ceramics. Biomaterials. ,vol. 25, pp. 2331- 2339 ,(2004) , 10.1016/J.BIOMATERIALS.2003.09.012