Variational Problems for Fefferman Hypersurface Measure and Volume-Preserving CR Invariants

作者: Christopher Hammond

DOI: 10.1007/S12220-010-9151-2

关键词:

摘要: We derive Euler’s equation for the isoperimetric problem and extremal hypersurface associated with Fefferman measure strongly pseudoconvex real hypersurfaces in ℂ2. use volume-preserving CR invariants to show that only “torsion-free” solutions of are images spheres.

参考文章(16)
Mark Fels, Peter J. Olver, Moving Coframes: II. Regularization and Theoretical Foundations Acta Applicandae Mathematicae. ,vol. 55, pp. 127- 208 ,(1999) , 10.1023/A:1006195823000
David E. Barrett, A floating body approach to Fefferman's hypersurface measure Mathematica Scandinavica. ,vol. 98, pp. 69- 80 ,(2006) , 10.7146/MATH.SCAND.A-14984
S. M. Webster, Pseudo-Hermitian structures on a real hypersurface Journal of Differential Geometry. ,vol. 13, pp. 25- 41 ,(1978) , 10.4310/JDG/1214434345
Thomas Ivey, Joseph Landsberg, Cartan for beginners ,(2003)
Shiing-Shen Chern, Jürgen K Moser, Real hypersurfaces in complex manifolds Acta Mathematica. ,vol. 133, pp. 219- 271 ,(1974) , 10.1007/BF02392146
Franc Forstneric, Interpolation by holomorphic automorphisms and embeddings in Cn Journal of Geometric Analysis. ,vol. 9, pp. 93- 117 ,(1999) , 10.1007/BF02923090
Noboru TANAKA, On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables Journal of The Mathematical Society of Japan. ,vol. 14, pp. 397- 429 ,(1962) , 10.2969/JMSJ/01440397
Peter Ebenfelt, Rothschild Linda Preiss, Baouendi M. Salah, Real Submanifolds in Complex Space and Their Mappings ,(1998)