IMS at EmoInt-2017: Emotion Intensity Prediction with Affective Norms, Automatically Extended Resources and Deep Learning.

作者: Maximilian Köper , Evgeny Kim , Roman Klinger

DOI: 10.18653/V1/W17-5206

关键词:

摘要: Our submission to the WASSA-2017 shared task on prediction of emotion intensity in tweets is a supervised learning method with extended lexicons affective norms. We combine three main informa- tion sources random forrest regressor, namely (1), manually created resources, (2) automatically lexicons, and (3) output neural network (CNN-LSTM) for sentence regression. All feature sets perform similarly well isolation (≈ .67 macro average Pearson correlation). The combination achieves .72 official test set (ranked 2nd out 22 participants). analysis reveals that performance increased by providing cross-emotional predictions. automatic extension lexicon features benefit from domain specific embeddings. Complementary ratings norms increase impact features. resources (ratings 1.6 million twitter words) our imple- mentation publicly available at http: //www.ims.uni-stuttgart.de/ data/ims_emoint.

参考文章(32)
Jared Suttles, Nancy Ide, Distant supervision for emotion classification with discrete binary values international conference on computational linguistics. pp. 121- 136 ,(2013) , 10.1007/978-3-642-37256-8_11
Andrea Esuli, Stefano Baccianella, Fabrizio Sebastiani, SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. language resources and evaluation. ,(2010)
Olutobi Owoputi, Kevin Gimpel, Nathan Schneider, Chris Dyer, Noah A. Smith, Brendan O'Connor, Improved Part-of-Speech Tagging for Online Conversational Text with Word Clusters north american chapter of the association for computational linguistics. pp. 380- 390 ,(2013)
Saima Aman, Stan Szpakowicz, Identifying expressions of emotion in text text speech and dialogue. pp. 196- 205 ,(2007) , 10.1007/978-3-540-74628-7_27
Leonard E. Trigg, Mark A. Hall, Ian H. Witten, Eibe Frank, Sally Jo Cunningham, Geoffrey Holmes, Weka: Practical machine learning tools and techniques with Java implementations ,(1999)
Saif M. Mohammad, Svetlana Kiritchenko, Using Hashtags to Capture Fine Emotion Categories from Tweets Computational Intelligence. ,vol. 31, pp. 301- 326 ,(2015) , 10.1111/COIN.12024
Yoon Kim, Convolutional Neural Networks for Sentence Classification empirical methods in natural language processing. pp. 1746- 1751 ,(2014) , 10.3115/V1/D14-1181
Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, Amit P. Sheth, Harnessing Twitter "Big Data" for Automatic Emotion Identification privacy security risk and trust. pp. 587- 592 ,(2012) , 10.1109/SOCIALCOM-PASSAT.2012.119
Marc Brysbaert, Amy Beth Warriner, Victor Kuperman, Concreteness ratings for 40 thousand generally known English word lemmas Behavior Research Methods. ,vol. 46, pp. 904- 911 ,(2014) , 10.3758/S13428-013-0403-5
Joana Costa, Catarina Silva, Mario Antunes, Bernardete Ribeiro, Concept Drift Awareness in Twitter Streams international conference on machine learning and applications. pp. 294- 299 ,(2014) , 10.1109/ICMLA.2014.53