Simultaneous feature weighting and parameter determination of Neural Networks using Ant Lion Optimization for the classification of breast cancer

作者: Singh Dalwinder , Singh Birmohan , Kaur Manpreet

DOI: 10.1016/J.BBE.2019.12.004

关键词:

摘要: Abstract In this paper, feature weighting is used to develop an effective computer-aided diagnosis system for breast cancer. Feature employed because it boosts the classification performance more as compared subset selection. Specifically, a wrapper method utilizing Ant Lion Optimization algorithm presented that searches best weights and parametric values of Multilayer Neural Network simultaneously. The selection hidden neurons backpropagation training algorithms are parameters neural networks. proposed approach evaluated on three cancer datasets. data initially normalized using tanh remove effects dominant features outliers. results show has better ability attain higher accuracy existing techniques. obtained high validates work which potential becoming alternative other well-known

参考文章(79)
Gehad Ismail Sayed, Aboul Ella Hassanien, Ahmad Taher Azar, None, Feature selection via a novel chaotic crow search algorithm Neural Computing and Applications. ,vol. 31, pp. 171- 188 ,(2019) , 10.1007/S00521-017-2988-6
William J. Gradishar, Benjamin O. Anderson, Ron Balassanian, Sarah L. Blair, Harold J. Burstein, Amy Cyr, Anthony D. Elias, William B. Farrar, Andres Forero, Sharon Hermes Giordano, Matthew P. Goetz, Lori J. Goldstein, Steven J. Isakoff, Janice Lyons, P. Kelly Marcom, Ingrid A. Mayer, Beryl McCormick, Meena S. Moran, Ruth M. O'Regan, Sameer A. Patel, Lori J. Pierce, Elizabeth C. Reed, Kilian E. Salerno, Lee S. Schwartzberg, Amy Sitapati, Karen Lisa Smith, Mary Lou Smith, Hatem Soliman, George Somlo, Melinda Telli, John H. Ward, Dorothy A. Shead, Rashmi Kumar, NCCN Guidelines® insights breast cancer, version 1.2017: Featured updates to the NCCN Guidelines Journal of The National Comprehensive Cancer Network. ,vol. 15, pp. 433- 451 ,(2017) , 10.6004/JNCCN.2017.0044
Andrew D. Trister, Diana S. M. Buist, Christoph I. Lee, Will Machine Learning Tip the Balance in Breast Cancer Screening JAMA Oncology. ,vol. 3, pp. 1463- 1464 ,(2017) , 10.1001/JAMAONCOL.2017.0473
Alaa Tharwat, Aboul Ella Hassanien, None, Chaotic antlion algorithm for parameter optimization of support vector machine Applied Intelligence. ,vol. 48, pp. 670- 686 ,(2018) , 10.1007/S10489-017-0994-0
Shuo Yang, Jing-Zhi Guo, Jun-Wei Jin, An improved Id3 algorithm for medical data classification Computers & Electrical Engineering. ,vol. 65, pp. 474- 487 ,(2017) , 10.1016/J.COMPELECENG.2017.08.005
Haifeng Wang, Bichen Zheng, Sang Won Yoon, Hoo Sang Ko, A support vector machine-based ensemble algorithm for breast cancer diagnosis European Journal of Operational Research. ,vol. 267, pp. 687- 699 ,(2017) , 10.1016/J.EJOR.2017.12.001
Lei Liu, Kai Li, Wenjian Qin, Tiexiang Wen, Ling Li, Jia Wu, Jia Gu, Automated breast tumor detection and segmentation with a novel computational framework of whole ultrasound images Medical & Biological Engineering & Computing. ,vol. 56, pp. 183- 199 ,(2018) , 10.1007/S11517-017-1770-3
Miguel Patrício, José Pereira, Joana Crisóstomo, Paulo Matafome, Manuel Gomes, Raquel Seiça, Francisco Caramelo, Using Resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer. ,vol. 18, pp. 29- 29 ,(2018) , 10.1186/S12885-017-3877-1
Celia Shahnaz, Jubaer Hossain, Shaikh Anowarul Fattah, Shajib Ghosh, Asir Intisar Khan, Efficient approaches for accuracy improvement of breast cancer classification using wisconsin database ieee region humanitarian technology conference. ,(2017) , 10.1109/R10-HTC.2017.8289075