Basic Simple Type Theory

作者: J. Roger Hindley

DOI:

关键词:

摘要: Introduction 1. The type-free lambda-calculus 2. Assigning types to terms 3. principal-type algorithm 4. Type assignment with equality 5. A version using typed 6. correspondence implication 7. converse 8. Counting a type's inhabitants 9. Technical details Answers starred exercises Bibliography Table of principal Index.

参考文章(62)
John Alan Robinson, Logic, form and function ,(1979)
Andre Scedrov, A guide to polymorphic types Springer, Berlin, Heidelberg. pp. 111- 150 ,(1990) , 10.1007/BFB0093926
A. G. Hamilton, Logic for Mathematicians ,(1978)
Barkley Rosser, The calculi of lambda-conversion ,(1941)
R.P. Nederpelt, Strong normalization in a typed lambda calculus with lambda structured types Studies in logic and the foundations of mathematics. ,vol. 133, pp. 389- 468 ,(1994) , 10.1016/S0049-237X(08)70217-9
Alasdair Urquhart, The Complexity of Propositional Proofs The Bulletin of Symbolic Logic. ,vol. 1, pp. 425- 467 ,(1995) , 10.2307/421131
Mario Coppo, Completeness of type assignment in continuous lambda models Theoretical Computer Science. ,vol. 29, pp. 309- 324 ,(1984) , 10.1016/0304-3975(84)90005-7
Kosta Došen, The first axiomatization of relevant logic Journal of Philosophical Logic. ,vol. 21, pp. 339- 356 ,(1992) , 10.1007/BF00260740