Markov random fields for abnormal behavior detection on highways

作者: P. L. M. Bouttefroy , A. Beghdadi , A. Bouzerdoum , S. L. Phung

DOI: 10.1109/EUVIP.2010.5699125

关键词:

摘要: This paper introduces a new paradigm for abnormal behavior detection relying on the integration of contextual information in Markov random fields. Contrary to traditional methods, proposed technique models local density object feature vector, therefore leading simple and elegant criterion classification. We develop Gaussian field mixture catering multi-modal integrating neighborhood into estimate. The convergence is ensured by online learning through stochastic clustering algorithm. system tested an extensive dataset (over 2800 vehicles) modeling. experimental results show that pedestrian walking, running cycling highway, detected with 82% accuracy at 10% false alarm rate, has overall 86% test data.

参考文章(15)
M. Dahmane, J. Meunier, Real-time video surveillance with self-organizing maps canadian conference on computer and robot vision. pp. 136- 143 ,(2005) , 10.1109/CRV.2005.65
Ying Wang, Kaiqi Huang, Tieniu Tan, Abnormal Activity Recognition in Office Based on R Transform international conference on image processing. ,vol. 1, pp. 341- 344 ,(2007) , 10.1109/ICIP.2007.4378961
Xinyu Wu, Yongsheng Ou, Huihuan Qian, Yangsheng Xu, A detection system for human abnormal behavior intelligent robots and systems. pp. 1204- 1208 ,(2005) , 10.1109/IROS.2005.1545205
D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, Semi-supervised adapted HMMs for unusual event detection computer vision and pattern recognition. ,vol. 1, pp. 611- 618 ,(2005) , 10.1109/CVPR.2005.316
A. Bouzerdoum, A stochastic competitive learning algorithm international joint conference on neural network. ,vol. 2, pp. 908- 913 ,(2001) , 10.1109/IJCNN.2001.939480
P. L. M. Bouttefroy, A. Bouzerdoum, S. L. Phung, A. Beghdadi, Abnormal behavior detection using a multi-modal stochastic learning approach international conference on intelligent sensors, sensor networks and information processing. pp. 121- 126 ,(2008) , 10.1109/ISSNIP.2008.4761973
Tao Xiang, Shaogang Gong, Video Behavior Profiling for Anomaly Detection IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 30, pp. 893- 908 ,(2008) , 10.1109/TPAMI.2007.70731
E.L. Andrade, S. Blunsden, R.B. Fisher, Modelling Crowd Scenes for Event Detection international conference on pattern recognition. ,vol. 1, pp. 175- 178 ,(2006) , 10.1109/ICPR.2006.806
Jie Yin, Qiang Yang, J.J. Pan, Sensor-Based Abnormal Human-Activity Detection IEEE Transactions on Knowledge and Data Engineering. ,vol. 20, pp. 1082- 1090 ,(2008) , 10.1109/TKDE.2007.1042
Martin Weser, Daniel Westhoff, Markus Huser, Jianwei Zhang, Multimodal People Tracking and Trajectory Prediction based on Learned Generalized Motion Patterns international conference on multisensor fusion and integration for intelligent systems. pp. 541- 546 ,(2006) , 10.1109/MFI.2006.265639