Digital Geometry — The Birth of a New Discipline

作者: Reinhard Klette

DOI: 10.1007/978-1-4615-1529-6_2

关键词:

摘要: Basic concepts of digital geometry are introduced, with emphasis on digitized Euclidean curves and surfaces. Topics covered include connectedness distance transforms, integer metrics, digitization models, multigrid convergence, straight line segments planar patches, approximation

参考文章(124)
Christian Ronse, A strong chord property for 4-connected convex digital sets Graphical Models \/graphical Models and Image Processing \/computer Vision, Graphics, and Image Processing. ,vol. 35, pp. 259- 269 ,(1986) , 10.1016/0734-189X(86)90030-7
R. A. Kirsch, L. Cahn, C. Ray, G. H. Urban, Experiments in processing pictorial information with a digital computer Papers and discussions presented at the December 9-13, 1957, eastern joint computer conference: Computers with deadlines to meet on XX - IRE-ACM-AIEE '57 (Eastern). pp. 221- 229 ,(1958) , 10.1145/1457720.1457763
M. N. Huxley, Exponential sums and lattice points III Proceedings of The London Mathematical Society. ,vol. 87, pp. 591- 609 ,(1993) , 10.1112/S0024611503014485
Samir Khuller, Azriel Rosenfeld, Angela Wu, Centers of sets of pixels Discrete Applied Mathematics. ,vol. 103, pp. 297- 306 ,(2000) , 10.1016/S0166-218X(99)00248-6
Jean-Marc Chassery, Connectivity and consecutivity in digital pictures Computer Graphics and Image Processing. ,vol. 9, pp. 294- 300 ,(1979) , 10.1016/0146-664X(79)90043-1
SCOTT THOMPSON, AZRIEL ROSENFELD, Discrete, Nonlinear Curvature-Dependent Contour Evolution Pattern Recognition. ,vol. 31, pp. 1949- 1959 ,(1998) , 10.1016/S0031-3203(98)00062-4
A. Rosenfeld, J.L. Pfaltz, Distance functions on digital pictures Pattern Recognition. ,vol. 1, pp. 33- 61 ,(1968) , 10.1016/0031-3203(68)90013-7
John L. Pfaltz, Azriel Rosenfeld, Computer representation of planar regions by their skeletons Communications of The ACM. ,vol. 10, pp. 119- 122 ,(1967) , 10.1145/363067.363120
Jean-Marc Chassery, Discrete convexity: Definition, parametrization, and compatibility with continuous convexity Computer Vision, Graphics, and Image Processing. ,vol. 21, pp. 326- 344 ,(1983) , 10.1016/S0734-189X(83)80047-4
Peter Veelaert, On the flatness of digital hyperplanes Journal of Mathematical Imaging and Vision. ,vol. 3, pp. 205- 221 ,(1993) , 10.1007/BF01250530