Footbridge between finite volumes and finite elements with applications to CFD

作者: Fr�d�ric Pascal , Jean-Michel Ghidaglia

DOI: 10.1002/FLD.199

关键词:

摘要: The aim of this paper is to introduce a new algorithm for the discretization second-order elliptic operators in context finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising computational fluid dynamics (CFD), like compressible Navier–Stokes equations. Our technique consists matching up based given mesh with element representation same mesh. An inverse operator also built, which has desirable property that absence diffusion, one recovers exactly solution. Numerical results provided. Copyright © 2001 John Wiley & Sons, Ltd.

参考文章(37)
J. Périaux, R. Glowinski, Numerical methods for nonlinear problem in fluid dynamics INRIA Conference on Supercomputing: state-of-the-art. pp. 381- 479 ,(1987)
H. Guillard, Mixed element volume methods in computational fluid dynamics Lecture series - van Kareman Institute for fluid dynamics. ,vol. 2, ,(1995)
Vit Dolejsi, Miloslav Feistauer, Jiri Felcman, Alice Klikova, Error Estimates for Barycentric Finite Volumes Combined with Nonconforming Finite Elements Applied to Nonlinear Convection-Diffusion Problems Applications of Mathematics. ,vol. 47, pp. 301- 340 ,(2002) , 10.1023/A:1021701705932
Paul Arminjon, Aziz Madrane, A Mixed Finite Volume/Finite Element Method for 2-dimensional Compressible Navier-Stokes Equations on Unstructured Grids International conference on hyperbolic problems. pp. 11- 20 ,(1999) , 10.1007/978-3-0348-8720-5_2
M. Feistauer, V. Dolejsi, J. Felcman, Numerical simulation of compressible viscous flow through cascades of profiles Journal of Applied Mathematics and Mechanics. ,vol. 76, pp. 297- 300 ,(1996)
M. H. Vignal, Convergence of a finite volume scheme for an elliptic-hyperbolic system Mathematical Modelling and Numerical Analysis. ,vol. 30, pp. 841- 872 ,(1996) , 10.1051/M2AN/1996300708411
C. Liu, S. McCormick, The finite volume-element method (FVE) for planar cavity flow Numerical Methods in Fluid Dynamics. ,vol. 323, pp. 374- 378 ,(1989) , 10.1007/3-540-51048-6_58
A. Dervieux, Steady Euler simulations using unstructured meshes cofd. ,vol. 1, ,(1985)
Robert Eymard, Thierry Gallouët, Raphaèle Herbin, Finite Volume Methods Handbook of Numerical Analysis. ,vol. 7, pp. 713- 1018 ,(2000) , 10.1016/S1570-8659(00)07005-8