Recognizing Interaction Activities using Dynamic Bayesian Network

作者: Youtian Du , Feng Chen , Wenli Xu , Yongbin Li

DOI: 10.1109/ICPR.2006.977

关键词:

摘要: … a Bayesian computer vision system for modeling and recognizing human interactions, and the … hidden Markov model (CHMM) was superior to HMM in interacting activity recognition. To …

参考文章(9)
J.K. Aggarwal, Sangho Park, Human motion: modeling and recognition of actions and interactions international symposium on 3d data processing visualization and transmission. pp. 640- 647 ,(2004) , 10.1109/3DPVT.2004.75
J. Yamato, J. Ohya, K. Ishii, Recognizing human action in time-sequential images using hidden Markov model computer vision and pattern recognition. pp. 379- 385 ,(1992) , 10.1109/CVPR.1992.223161
N.M. Oliver, B. Rosario, A.P. Pentland, A Bayesian computer vision system for modeling human interactions IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 22, pp. 831- 843 ,(2000) , 10.1109/34.868684
Somboon Hongeng, Ram Nevatia, Francois Bremond, Video-based event recognition: activity representation and probabilistic recognition methods Computer Vision and Image Understanding. ,vol. 96, pp. 129- 162 ,(2004) , 10.1016/J.CVIU.2004.02.005
Shaogang Gong, Tao Xiang, Recognition of group activities using dynamic probabilistic networks international conference on computer vision. pp. 742- 749 ,(2003) , 10.1109/ICCV.2003.1238423
J.W. Davis, S.R. Taylor, Analysis and recognition of walking movements international conference on pattern recognition. ,vol. 1, pp. 10315- 10315 ,(2002) , 10.1109/ICPR.2002.1044702
Liang Wang, Weiming Hu, Tieniu Tan, Recent developments in human motion analysis Pattern Recognition. ,vol. 36, pp. 585- 601 ,(2003) , 10.1016/S0031-3203(02)00100-0
T.V. Duong, H.H. Bui, D.Q. Phung, S. Venkatesh, Activity recognition and abnormality detection with the switching hidden semi-Markov model computer vision and pattern recognition. ,vol. 1, pp. 838- 845 ,(2005) , 10.1109/CVPR.2005.61
N.T. Nguyen, D.Q. Phung, S. Venkatesh, H. Bui, Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model computer vision and pattern recognition. ,vol. 2, pp. 955- 960 ,(2005) , 10.1109/CVPR.2005.203