Techniques for clustering interaction data as a collection of graphs

作者: I-Jeng Wang , Youngser Park , Carey Priebe , Nam H. Lee , Michael Rosen

DOI:

关键词:

摘要: A natural approach to analyze interaction data of form "what-connects-to-what-when" is create a time-series (or rather sequence) graphs through temporal discretization (bandwidth selection) and spatial (vertex contraction). Such together with non-negative factorization techniques can be useful for obtaining clustering graphs. Motivating application performing (as opposed vertex clustering) found in neuroscience social network analysis, it also used enhance community detection (i.e., by way conditioning on the cluster labels. In this paper, we formulate problem as model selection problem. Our involves information criteria, matrix singular value thresholding, illustrate our using real simulated data.

参考文章(21)
Stephen J. Young, Edward R. Scheinerman, Random dot product graph models for social networks workshop on algorithms and models for the web graph. pp. 138- 149 ,(2007) , 10.1007/978-3-540-77004-6_11
Nicolas Gillis, The Why and How of Nonnegative Matrix Factorization. arXiv: Machine Learning. ,(2014)
Rasmus Bro, Henk A. L. Kiers, A new efficient method for determining the number of components in PARAFAC models Journal of Chemometrics. ,vol. 17, pp. 274- 286 ,(2003) , 10.1002/CEM.801
Sourav Chatterjee, Matrix estimation by Universal Singular Value Thresholding arXiv: Statistics Theory. ,(2012) , 10.1214/14-AOS1272
William M. Rand, Objective Criteria for the Evaluation of Clustering Methods Journal of the American Statistical Association. ,vol. 66, pp. 846- 850 ,(1971) , 10.1080/01621459.1971.10482356
T. A. Jarrell, Y. Wang, A. E. Bloniarz, C. A. Brittin, M. Xu, J. N. Thomson, D. G. Albertson, D. H. Hall, S. W. Emmons, The Connectome of a Decision-Making Neural Network Science. ,vol. 337, pp. 437- 444 ,(2012) , 10.1126/SCIENCE.1221762
Junying Zhang, Le Wei, Xuerong Feng, Zhen Ma, Yue Wang, Pattern expression nonnegative matrix factorization: algorithm and applications to blind source separation. Computational Intelligence and Neuroscience. ,vol. 2008, pp. 168769- 168769 ,(2008) , 10.1155/2008/168769
Hans Laurberg, Mads Græsbøll Christensen, Mark D. Plumbley, Lars Kai Hansen, Søren Holdt Jensen, Theorems on Positive Data: on the Uniqueness of NMF Computational Intelligence and Neuroscience. ,vol. 2008, pp. 764206- 764206 ,(2008) , 10.1155/2008/764206
Peter D Hoff, Adrian E Raftery, Mark S Handcock, Latent Space Approaches to Social Network Analysis Journal of the American Statistical Association. ,vol. 97, pp. 1090- 1098 ,(2001) , 10.1198/016214502388618906