Strongly nilpotent matrices and Gelfand–Zetlin modules

作者: Serge Ovsienko

DOI: 10.1016/S0024-3795(02)00675-4

关键词:

摘要: Abstract Let X n be the variety of × matrices, which k submatrices, formed by first rows and columns, are nilpotent for any =1,…, . We show, that is a complete intersection dimension ( −1) /2 deduce from it, every character Gelfand–Zetlin subalgebra in U gl ) extends to an irreducible representation ).

参考文章(5)
È B Vinberg, ON CERTAIN COMMUTATIVE SUBALGEBRAS OF A UNIVERSAL ENVELOPING ALGEBRA Mathematics of The Ussr-izvestiya. ,vol. 36, pp. 1- 22 ,(1991) , 10.1070/IM1991V036N01ABEH001925
D. P. Zhelobenko, Compact Lie groups and their representations American Mathematical Society. ,(1973)
Ian Grant Macdonald, Symmetric functions and Hall polynomials ,(1979)
S. A. Ovsienko, V. M. Futorny, Yu. A. Drozd, On Gelfand-Zetlin modules Circolo Matematico di Palermo(Palermo). pp. 143- 147 ,(1991)
Martin Golubitsky, Gaisi Takeuti, Béla Bollobás, Tom M. Apostol, Glen Bredon, John L. Kelley, B. A. Dubrovin, Peter Walters, John Stillwell, Joseph J. Rotman, Raoul Bott, Jane Gilman, John M. Lee, Jiří Matoušek, Saunders Mac Lane, Rajendra Bhatia, M. Ram Murty, Ioannis Karatzas, William Arveson, Henri Cohen, Wolfgang Walter, Graduate Texts in Mathematics ,(1977)