Changes in Soil Dissolved Organic Carbon Affect Reconstructed History and Projected Future Trends in Surface Water Acidification

作者: Jakub Hruška , Pavel Krám , Filip Moldan , Filip Oulehle , Christopher D. Evans

DOI: 10.1007/S11270-014-2015-9

关键词:

摘要: Preindustrial (1850s) and future (2060) streamwater chemistry of an anthropogenically acidified small catchment was estimated using the MAGIC model for three different scenarios dissolved organic carbon (DOC) concentrations sources. The highest modeled pH = 5.7 1850s as well 2060 (pH = 4.4) simulated given assumption that DOC concentration constant at 1993 level. A scenario accounting increase inverse function ionic strength (IS) soilwater resulted in much lower preindustrial (pH = 4.9) recovery to (pH = 4.1) if stream riparian zone assumed be only source. If upland (where significant observed −5 −15 cm) also included, partly neutralized within soil higher pH = 5.3 pH = 4.2 were estimated. flux 2–4 times than potential production zone, implying this is unlikely sole Modeling based on changes are solely attributable appears likely underestimate pH.

参考文章(46)
WERNER BORKEN, BERNHARD AHRENS, CHRISTOPH SCHULZ, LOTHAR ZIMMERMANN, Site-to-site variability and temporal trends of DOC concentrations and fluxes in temperate forest soils Global Change Biology. ,vol. 17, pp. 2428- 2443 ,(2011) , 10.1111/J.1365-2486.2011.02390.X
M. CATHERINE EIMERS, SHAUN A. WATMOUGH, JAMES M. BUTTLE, PETER J. DILLON, Examination of the potential relationship between droughts, sulphate and dissolved organic carbon at a wetland-draining stream Global Change Biology. ,vol. 14, pp. 938- 948 ,(2008) , 10.1111/J.1365-2486.2007.01530.X
F Oulehle, BJ Cosby, RF Wright, J Hruška, J Kopáček, P Krám, CD Evans, F Moldan, None, Modelling soil nitrogen: the MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environmental Pollution. ,vol. 165, pp. 158- 166 ,(2012) , 10.1016/J.ENVPOL.2012.02.021
Filip Moldan, Bernard J. Cosby, Richard F. Wright, Modeling past and future acidification of Swedish lakes. AMBIO: A Journal of the Human Environment. ,vol. 42, pp. 577- 586 ,(2013) , 10.1007/S13280-012-0360-8
Sara M. Ekström, Emma S. Kritzberg, Dan B. Kleja, Niklas Larsson, P. Anders Nilsson, Wilhelm Graneli, Bo Bergkvist, Effect of Acid Deposition on Quantity and Quality of Dissolved Organic Matter in Soil–Water Environmental Science & Technology. ,vol. 45, pp. 4733- 4739 ,(2011) , 10.1021/ES104126F
F. Buzek, J. Hruška, P. Krám, Three-component model of runoff generation, Lysina catchment, Czech Republic Water Air and Soil Pollution. ,vol. 79, pp. 391- 408 ,(1995) , 10.1007/BF01100449
Luca Bragazza, Chris Freeman, Timothy Jones, Håkan Rydin, Juul Limpens, Nathalie Fenner, Tim Ellis, Renato Gerdol, Michal Hájek, Tomáš Hájek, Paola Iacumin, Lado Kutnar, Teemu Tahvanainen, Hannah Toberman, Atmospheric nitrogen deposition promotes carbon loss from peat bogs Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 19386- 19389 ,(2006) , 10.1073/PNAS.0606629104
E. Tipping, E.C. Rowe, C.D. Evans, R.T.E. Mills, B.A. Emmett, J.S. Chaplow, J.R. Hall, N14C: A plant–soil nitrogen and carbon cycling model to simulate terrestrial ecosystem responses to atmospheric nitrogen deposition Ecological Modelling. ,vol. 247, pp. 11- 26 ,(2012) , 10.1016/J.ECOLMODEL.2012.08.002
Charles T. Driscoll, Michael D. Lehtinen, Timothy J. Sullivan, Modeling the acid-base chemistry of organic solutes in Adirondack, New York, lakes Water Resources Research. ,vol. 30, pp. 297- 306 ,(1994) , 10.1029/93WR02888