A Bayesian analysis of classical hypothesis testing

作者: José M. Bernardo

DOI: 10.1007/BF02888370

关键词:

摘要: The procedure of maximizing the missing information is applied to derive reference posterior probabilities for null hypotheses. results shed further light on Lindley’s paradox and suggest that a Bayesian interpretation classical hypothesis testing possible by providing one-to-one approximate relationship between significance levels probabilities.

参考文章(33)
Jose M. Bernardo, Reference Posterior Distributions for Bayesian Inference Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 41, pp. 113- 128 ,(1979) , 10.1111/J.2517-6161.1979.TB01066.X
A. F. M. Smith, D. J. Spiegelhalter, Bayes Factors and Choice Criteria for Linear Models Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 42, pp. 213- 220 ,(1980) , 10.1111/J.2517-6161.1980.TB01122.X
A. F. M. Smith, A. Zellner, Bayesian Analysis in Econometrics and Statistics: Essays in Honour of Harold Jeffreys Journal of the Royal Statistical Society: Series A (General). ,vol. 145, pp. 518- 520 ,(1982) , 10.2307/2982118
D. V. Lindley, The Use of Prior Probability Distributions in Statistical Inference and Decisions Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. ,(1961)
Karl R. Popper, The Logic of Scientific Discovery ,(1934)
Seymour Geisser, William F. Eddy, A Predictive Approach to Model Selection Journal of the American Statistical Association. ,vol. 74, pp. 153- 160 ,(1979) , 10.1080/01621459.1979.10481632
CE Shennon, Warren Weaver, A mathematical theory of communication Bell System Technical Journal. ,vol. 27, pp. 379- 423 ,(1948) , 10.1002/J.1538-7305.1948.TB01338.X
A. C. ATKINSON, Posterior probabilities for choosing a regression model Biometrika. ,vol. 65, pp. 39- 48 ,(1978) , 10.1093/BIOMET/65.1.39
E. S. Pearson, Some Thoughts on Statistical Inference Annals of Mathematical Statistics. ,vol. 33, pp. 394- 403 ,(1962) , 10.1214/AOMS/1177704566
R. T. Cox, Probability, Frequency and Reasonable Expectation American Journal of Physics. ,vol. 14, pp. 1- 13 ,(1946) , 10.1119/1.1990764