Statistical properties of the eigenvalue spectrum of the three-dimensional Anderson Hamiltonian.

作者: E. Hofstetter , M. Schreiber

DOI: 10.1103/PHYSREVB.48.16979

关键词:

摘要: A method to describe the metal-insulator transition (MIT) in disordered systems is presented. For this purpose statistical properties of eigenvalue spectrum Anderson Hamiltonian are considered. As MIT corresponds between chaotic and nonchaotic behavior, it can be expected that random matrix theory enables a qualitative description phase transition. We show possible determine critical disorder way. In thermodynamic limit point behavior separates two different regimes: one for metallic side insulating side.

参考文章(21)
E. N. Economou, C. M. Soukoulis, A. D. Zdetsis, Localized states in disordered systems as bound states in potential wells Physical Review B. ,vol. 30, pp. 1686- 1694 ,(1984) , 10.1103/PHYSREVB.30.1686
Dieter Vollhardt, Peter Wölfle, Diagrammatic, self-consistent treatment of the Anderson localization problem ind≤2dimensions Physical Review B. ,vol. 22, pp. 4666- 4679 ,(1980) , 10.1103/PHYSREVB.22.4666
Dieter Vollhardt, P Wölfle, None, Scaling Equations from a Self-Consistent Theory of Anderson Localization Physical Review Letters. ,vol. 48, pp. 699- 702 ,(1982) , 10.1103/PHYSREVLETT.48.699
A. MacKinnon, B. Kramer, One-Parameter Scaling of Localization Length and Conductance in Disordered Systems Physical Review Letters. ,vol. 47, pp. 1546- 1549 ,(1981) , 10.1103/PHYSREVLETT.47.1546
A. MacKinnon, B. Kramer, The scaling theory of electrons in disordered solids: Additional numerical results Zeitschrift für Physik B Condensed Matter. ,vol. 53, pp. 1- 13 ,(1983) , 10.1007/BF01578242
Hervé Kunz, Sur le spectre des opérateurs aux différences finies aléatoires Communications in Mathematical Physics. ,vol. 78, pp. 201- 246 ,(1980) , 10.1007/BF01942371
Jürg Fröhlich, Thomas Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy Communications in Mathematical Physics. ,vol. 88, pp. 151- 184 ,(1983) , 10.1007/BF01209475
David H. Dunlap, H-L. Wu, Philip W. Phillips, Absence of localization in a random-dimer model Physical Review Letters. ,vol. 65, pp. 88- 91 ,(1990) , 10.1103/PHYSREVLETT.65.88
Barry Simon, Almost periodic Schrödinger operators: A Review Advances in Applied Mathematics. ,vol. 3, pp. 463- 490 ,(1982) , 10.1016/S0196-8858(82)80018-3
J. Kollár, A. Sütõ, The Kronig-Penney model on a fibonacci lattice Physics Letters A. ,vol. 117, pp. 203- 209 ,(1986) , 10.1016/0375-9601(86)90741-3