Strongly extreme points and the Radon-Nikodým property

作者: Zhibao Hu

DOI: 10.1090/S0002-9939-1993-1152279-5

关键词:

摘要: We prove that if K is a bounded and convex subset of Banach space X x point in K, then strongly extreme only K* which the weak* closure X**. also has Radon-Nikodym property for any equivalent norm on X, unit ball

参考文章(6)
R. Huff, P. Morris, Geometric characterizations of the Radon-Nikodym property in Banach spaces Studia Mathematica. ,vol. 56, pp. 157- 164 ,(1976) , 10.4064/SM-56-2-157-164
David W. Dean, The equation (,**)=(,)** and the principle of local reflexivity Proceedings of the American Mathematical Society. ,vol. 40, pp. 146- 148 ,(1973) , 10.1090/S0002-9939-1973-0324383-X
Kenneth Kunen, Haskell Rosenthal, Martingale proofs of some geometrical results in Banach space theory. Pacific Journal of Mathematics. ,vol. 100, pp. 153- 175 ,(1982) , 10.2140/PJM.1982.100.153
David W. Dean, The Equation L(E, X ∗ ∗ = L(E, X) ∗ ∗ and the Principle of Local Reflexivity Proceedings of the American Mathematical Society. ,vol. 40, pp. 146- ,(1973) , 10.2307/2038653
Peter Morris, Disappearance of extreme points Proceedings of the American Mathematical Society. ,vol. 88, pp. 244- 246 ,(1983) , 10.1090/S0002-9939-1983-0695251-5