Disrupted structural connectivity in ArcAβ mouse model of Aβ amyloidosis

作者: Md. Mamun Al-Amin , Joanes Grandjean , Jan Klohs , Jungsu Kim

DOI: 10.1101/2020.04.27.064634

关键词:

摘要: Although amyloid beta (Aβ) deposition is one of the major causes white matter (WM) alterations in Alzheimer9s disease (AD), little known about underlying basis WM damage and its association with global structural connectivity network topology. We aimed to dissect contributions microstructure properties ArcAβ mice model Aβ amyloidosis. acquired diffusion-weighted images (DWI) wild type (WT) transgenic (TG) using a 9.4 T MRI scanner. Fixel-based analysis (FBA) was performed measure fiber tract-specific properties. also three complementary experiments; identify differences connectivity, compute cellular alterations. Transgenic displayed disrupted centered entorhinal cortex (EC) lower density bundle cross-section. In addition, there reduced efficiency degree centrality weighted mice. To further examine neuronal deficits, we histology experiments. found no alteration myelination an increased level neurofilament light (NFL) brain regions TG Furthermore, had number perineuronal nets (PNN) EC. The observed FDC reductions may indicate decrease axonal diameter or axon count which would explain deficits increase NFL suggests breakdown integrity, reduce health. Considering pivotal role EC AD, primarily release, damaging PNN pathway, resulting connectivity.

参考文章(91)
Ricarda A. L. Menke, Elizabeth Gray, Ching‐Hua Lu, Jens Kuhle, Kevin Talbot, Andrea Malaspina, Martin R. Turner, CSF neurofilament light chain reflects corticospinal tract degeneration in ALS Annals of clinical and translational neurology. ,vol. 2, pp. 748- 755 ,(2015) , 10.1002/ACN3.212
Richard P. Propp, Cerebrospinal Fluid C Journal of Immunology. ,vol. 111, pp. 310- 310 ,(1973)
Markus Morawski, Gert Brückner, Carsten Jäger, Gudrun Seeger, Russel T Matthews, Thomas Arendt, Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology. Brain Pathology. ,vol. 22, pp. 547- 561 ,(2012) , 10.1111/J.1750-3639.2011.00557.X
Jinhui Wang, Xindi Wang, Mingrui Xia, Xuhong Liao, Alan Evans, Yong He, None, GRETNA: a graph theoretical network analysis toolbox for imaging connectomics Frontiers in Human Neuroscience. ,vol. 9, pp. 386- 386 ,(2015) , 10.3389/FNHUM.2015.00386
Carmen M. Fernandez-Martos, Anna E. King, Rachel A.K. Atkinson, Adele Woodhouse, James C. Vickers, Neurofilament light gene deletion exacerbates amyloid, dystrophic neurite, and synaptic pathology in the APP/PS1 transgenic model of Alzheimer's disease Neurobiology of Aging. ,vol. 36, pp. 2757- 2767 ,(2015) , 10.1016/J.NEUROBIOLAGING.2015.07.003
Henrik Zetterberg, Tobias Skillbäck, Niklas Mattsson, John Q. Trojanowski, Erik Portelius, Leslie M. Shaw, Michael W. Weiner, Kaj Blennow, , Association of cerebrospinal fluid neurofilament light concentration with Alzheimer disease progression JAMA Neurology. ,vol. 73, pp. 60- 67 ,(2016) , 10.1001/JAMANEUROL.2015.3037
Joanes Grandjean, Aileen Schroeter, Pan He, Matteo Tanadini, Ruth Keist, Dimitrije Krstic, Uwe Konietzko, Jan Klohs, Roger M. Nitsch, Markus Rudin, Early alterations in functional connectivity and white matter structure in a transgenic mouse model of cerebral amyloidosis. The Journal of Neuroscience. ,vol. 34, pp. 13780- 13789 ,(2014) , 10.1523/JNEUROSCI.4762-13.2014
Joanne M. Ajmo, Lauren A. Bailey, Matthew D. Howell, Lisa K. Cortez, Keith R. Pennypacker, Hina N. Mehta, Dave Morgan, Marcia N. Gordon, Paul E. Gottschall, Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw. Journal of Neurochemistry. ,vol. 113, pp. 784- 795 ,(2010) , 10.1111/J.1471-4159.2010.06647.X
M. Sjögren, M. Blomberg, M. Jonsson, L.-O. Wahlund, Å Edman, K. Lind, L. Rosengren, K. Blennow, A. Wallin, Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. Journal of Neuroscience Research. ,vol. 66, pp. 510- 516 ,(2001) , 10.1002/JNR.1242