Asynchronous Differential Evolution

作者: Alfredo Milani , Valentino Santucci

DOI: 10.1109/CEC.2010.5586107

关键词:

摘要: This paper introduces the Asynchronous Differential Evolution (ADE) scheme which generalizes classical (DE) approach along dimension of Synchronization Degree (SD). SD regulates synchrony evolution current population, i.e. how fast it is replaced by newly generated population. The definition ADE given and different synchronization strategies are discussed. introduction parameter allows tuning differential from a completely asynchronous behavior to super-synchronous behavior. Experiments show that low generally improves convergence speed probability with respect synchronous DE. Moreover ordering introduced in seem improve performances only already known variant DE (the Dynamical Strategy).

参考文章(7)
Antonio Laganà, Antonio Riganelli, Osvaldo Gervasi, On the Structuring of the Computational Chemistry Virtual Organization COMPCHEM Computational Science and Its Applications - ICCSA 2006. ,vol. 3980, pp. 665- 674 ,(2006) , 10.1007/11751540_70
David E. Goldberg, John H. Holland, Genetic Algorithms and Machine Learning Machine Learning. ,vol. 3, pp. 95- 99 ,(1988) , 10.1023/A:1022602019183
Enrique Alba, José M. Troya, Analyzing synchronous and asynchronous parallel distributed genetic algorithms Future Generation Computer Systems. ,vol. 17, pp. 451- 465 ,(2001) , 10.1016/S0167-739X(99)00129-6
K. Deb, N. Hansen, Y. P. Chen, A. Auger, P. N. Suganthan, J. J. Liang, S. Tiwari, Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization ,(2005)
Anyong Qing, Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems IEEE Transactions on Geoscience and Remote Sensing. ,vol. 44, pp. 116- 125 ,(2006) , 10.1109/TGRS.2005.859347
E. Alba, M. Tomassini, Parallelism and evolutionary algorithms IEEE Transactions on Evolutionary Computation. ,vol. 6, pp. 443- 462 ,(2002) , 10.1109/TEVC.2002.800880
E. Alba, B. Dorronsoro, The exploration/exploitation tradeoff in dynamic cellular genetic algorithms IEEE Transactions on Evolutionary Computation. ,vol. 9, pp. 126- 142 ,(2005) , 10.1109/TEVC.2005.843751