Proof of a Phase Transition in Probabilistic Cellular Automata

作者: Damien Regnault

DOI: 10.1007/978-3-642-38771-5_38

关键词:

摘要: Cellular automata are a model of parallel computing. It is well known that simple deterministic cellular may exhibit complex behaviors such as Turing universality [3,13] but only few results about probabilistic automata.

参考文章(18)
Nazim Fatès, Asynchronism Induces Second Order Phase Transitions in Elementary Cellular Automata Journal of Cellular Automata. ,vol. 4, pp. 21- 38 ,(2008)
Andrew Adamatzky, Collision-Based Computing ,(2002)
Damien Regnault, Directed Percolation Arising in Stochastic Cellular Automata Analysis mathematical foundations of computer science. pp. 563- 574 ,(2008) , 10.1007/978-3-540-85238-4_46
Lucas Gerin, Philippe Chassaing, Asynchronous Cellular Automata and Brownian Motion Discrete Mathematics & Theoretical Computer Science. pp. 423- 442 ,(2007)
N. Ollinger, G. Richard, Four states are enough Theoretical Computer Science. ,vol. 412, pp. 22- 32 ,(2011) , 10.1016/J.TCS.2010.08.018
Mark Land, Richard K Belew, None, No perfect two-state cellular automata for density classification exists. Physical Review Letters. ,vol. 74, pp. 5148- 5150 ,(1995) , 10.1103/PHYSREVLETT.74.5148
Elchanan Mossel, Sébastien Roch, Slow emergence of cooperation for win-stay lose-shift on trees Machine Learning. ,vol. 67, pp. 7- 22 ,(2007) , 10.1007/S10994-006-9713-5
Jacques Mazoyer, A six-state minimal time solution to the firing squad synchronization problem Theoretical Computer Science. ,vol. 50, pp. 183- 238 ,(1987) , 10.1016/0304-3975(87)90124-1
Damien Regnault, Nicolas Schabanel, Éric Thierry, Progresses in the analysis of stochastic 2D cellular automata: A study of asynchronous 2D minority Theoretical Computer Science. ,vol. 410, pp. 4844- 4855 ,(2009) , 10.1016/J.TCS.2009.06.024
P. Gacs, Reliable cellular automata with self-organization foundations of computer science. ,vol. 103, pp. 90- 99 ,(1997) , 10.1023/A:1004823720305