Max-margin Multiple-Instance Learning via Semidefinite Programming

作者: Yuhong Guo

DOI: 10.1007/978-3-642-05224-8_9

关键词:

摘要: In this paper, we present a novel semidefinite programming approach for multiple-instance learning. We first formulate the learning as combinatorial maximum margin optimization problem with additional instance selection constraints within framework of support vector machines. Although solving primal requires non-convex programming, nevertheless can then derive an equivalent dual formulation that be relaxed into convex (SDP). The SDP has $\mathcal{O}(T)$ free parameters where T is number instances, and solved using standard interior-point method. Empirical study shows promising performance proposed in comparison machine approaches heuristic procedures.

参考文章(19)
Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, Jitendra Malik, Blobworld: A System for Region-Based Image Indexing and Retrieval Lecture Notes in Computer Science. pp. 509- 516 ,(1999) , 10.1007/3-540-48762-X_63
Zhi-Hua Zhou, Min-Ling Zhang, Ensembles of multi-instance learners european conference on machine learning. pp. 492- 502 ,(2003) , 10.1007/978-3-540-39857-8_44
Peter A. Flach, Thomas Gärtner, Alex J. Smola, Adam Kowalczyk, Multi-Instance Kernels international conference on machine learning. pp. 179- 186 ,(2002)
Aparna Lakshmi Ratan, Oded Maron, Multiple-Instance Learning for Natural Scene Classification international conference on machine learning. pp. 341- 349 ,(1998)
Jason Fritts, Sally A. Goldman, Qi Zhang, Wei Yu, Content-Based Image Retrieval Using Multiple-Instance Learning international conference on machine learning. pp. 682- 689 ,(2002)
Lambert Schomaker, Edward de Leau, Louis Vuurpijl, Using Pen-Based Outlines for Object-Based Annotation and Image-Based Queries Lecture Notes in Computer Science. ,vol. 1614, pp. 585- 592 ,(1999) , 10.1007/3-540-48762-X_72
Jos F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones Optimization Methods & Software. ,vol. 11, pp. 625- 653 ,(1999) , 10.1080/10556789908805766
O. L. Mangasarian, E. W. Wild, Multiple Instance Classification via Successive Linear Programming Journal of Optimization Theory and Applications. ,vol. 137, pp. 555- 568 ,(2008) , 10.1007/S10957-007-9343-5
Ioannis Tsochantaridis, Stuart Andrews, Thomas Hofmann, Support Vector Machines for Multiple-Instance Learning neural information processing systems. ,vol. 15, pp. 577- 584 ,(2002)
Thomas G. Dietterich, Richard H. Lathrop, Tomás Lozano-Pérez, Solving the multiple instance problem with axis-parallel rectangles Artificial Intelligence. ,vol. 89, pp. 31- 71 ,(1997) , 10.1016/S0004-3702(96)00034-3