Introduction to the Variational Monte Carlo Method in Quantum Chemistry and Physics

作者: Brenda Rubenstein

DOI: 10.1007/978-981-10-2502-0_10

关键词:

摘要: Variational Monte Carlo (VMC) methods are a powerful set of quantum (QMC) that may not only be used to determine the variational energy fully parameterized wave function, but optimize functions as well. Because they can provide highly accurate trial for more advanced at comparatively low cost, viewed foundation upon which modern built. In this chapter, I basic introduction VMC intended beginning graduate students and workers in fields physics chemistry unfamiliar with topic. begin general then describe how fit into larger context. given function subsequently detail algorithm modified functions. After illustrating number algorithms work, elucidate two most important methods—the Linear Stochastic Reconfiguration methods—work. To context, present few recent, novel applications problems physics, including Hubbard model, excited state chemistry, calculation atomization energies. end discussion possible future directions algorithms.

参考文章(127)
C. J. Umrigar, K. G. Wilson, J. W. Wilkins, A Method for Determining Many Body Wavefunctions Springer, Berlin, Heidelberg. pp. 185- 194 ,(1988) , 10.1007/978-3-642-93400-1_20
Fengjie Ma, Wirawan Purwanto, Shiwei Zhang, Henry Krakauer, Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians Physical Review Letters. ,vol. 114, pp. 226401- ,(2015) , 10.1103/PHYSREVLETT.114.226401
J. P. F. LeBlanc, Andrey E. Antipov, Federico Becca, Ireneusz W. Bulik, Garnet Kin-Lic Chan, Chia-Min Chung, Youjin Deng, Michel Ferrero, Thomas M. Henderson, Carlos A. Jiménez-Hoyos, E. Kozik, Xuan-Wen Liu, Andrew J. Millis, N. V. Prokof’ev, Mingpu Qin, Gustavo E. Scuseria, Hao Shi, B. V. Svistunov, Luca F. Tocchio, I. S. Tupitsyn, Steven R. White, Shiwei Zhang, Bo-Xiao Zheng, Zhenyue Zhu, Emanuel Gull, , Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms Physical Review X. ,vol. 5, pp. 041041- ,(2015) , 10.1103/PHYSREVX.5.041041
M. Bajdich, L. Mitas, G. Drobný, L. K. Wagner, K. E. Schmidt, Pfaffian pairing wave functions in electronic-structure quantum Monte Carlo simulations. Physical Review Letters. ,vol. 96, pp. 130201- ,(2006) , 10.1103/PHYSREVLETT.96.130201
Michael D. Towler, Quantum Monte Carlo, Or, Solving the Many‐Particle Schrödinger Equation Accurately While Retaining Favorable Scaling with System Size Computational Methods for Large Systems: Electronic Structure Approaches for Biotechnology and Nanotechnology. pp. 117- 166 ,(2011) , 10.1002/9780470930779.CH4
Fionn D. Malone, N. S. Blunt, James J. Shepherd, D. K. K. Lee, J. S. Spencer, W. M. C. Foulkes, Interaction picture density matrix quantum Monte Carlo Journal of Chemical Physics. ,vol. 143, pp. 044116- 044116 ,(2015) , 10.1063/1.4927434
Neil S. Ostlund, Attila Szabo, Modern quantum chemistry : introduction to advanced electronic structure theory Published in <b>1989</b> reprint in <b>1996</b> in Mineola NY) by Dover publications. ,(1982)
J. L. DuBois, H. R. Glyde, Natural orbitals and Bose-Einstein condensates in traps: A diffusion Monte Carlo analysis Physical Review A. ,vol. 68, pp. 033602- ,(2003) , 10.1103/PHYSREVA.68.033602