Nitric Oxide Signaling in the Striatum

作者: A.R. West

DOI: 10.1016/B978-0-12-802206-1.00011-8

关键词:

摘要: Striatal medium-sized spiny neurons contain high levels of soluble guanylyl cyclase (sGC), 3′-5′-cyclic guanosine monophosphate (cGMP)-dependent protein kinase and other components the cGMP signaling system. sGC-cGMP is activated by gaseous neuromodulator nitric oxide (NO). A growing body literature indicates that under physiological conditions, NO-producing interneurons are potently glutamate dopamine (DA). The complex nature modulatory effects NO on striatal likely depends effector pathways recruited during relative activity subtype study. Indeed, a review electrophysiological studies exerts variety local circuit projection involved in regulating basal ganglia output motor behavior. In addition to summarizing these influences, this chapter discusses impact DA depletion examines relevance nitrergic dysregulation for pathophysiology Parkinson's disease.

参考文章(207)
M. G. Murer, K. Y. Tseng, F. Kasanetz, M. Belluscio, L. A. Riquelme, Brain oscillations, medium spiny neurons, and dopamine. Cellular and Molecular Neurobiology. ,vol. 22, pp. 611- 632 ,(2002) , 10.1023/A:1021840504342
P.C. Emson, S.J. Augood, R. Señaris, R. Guevara Guzman, J. Kishimoto, K. Kadowaki, P.J. Norris, K.M. Kendrick, Chapter 10 Chemical signalling and striatal interneurones Progress in Brain Research. ,vol. 99, pp. 155- 165 ,(1993) , 10.1016/S0079-6123(08)61344-8
Paolo Calabresi, Paolo Gubellini, Diego Centonze, Barbara Picconi, Giorgio Bernardi, Karima Chergui, Per Svenningsson, Allen A. Fienberg, Paul Greengard, Dopamine and cAMP-Regulated Phosphoprotein 32 kDa Controls Both Striatal Long-Term Depression and Long-Term Potentiation, Opposing Forms of Synaptic Plasticity The Journal of Neuroscience. ,vol. 20, pp. 8443- 8451 ,(2000) , 10.1523/JNEUROSCI.20-22-08443.2000
Thomas Wichmann, Mahlon R. DeLong, Anatomy and physiology of the basal ganglia: relevance to Parkinson's disease and related disorders. Handbook of Clinical Neurology. ,vol. 83, pp. 1- 18 ,(2007) , 10.1016/S0072-9752(07)83001-6
B Brüne, E G Lapetina, Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents. Journal of Biological Chemistry. ,vol. 264, pp. 8455- 8458 ,(1989) , 10.1016/S0021-9258(18)81808-7
O. A. Sergeeva, N. Doreulee, A. N. Chepkova, T. Kazmierczak, H. L. Haas, Long-term depression of cortico-striatal synaptic transmission by DHPG depends on endocannabinoid release and nitric oxide synthesis. European Journal of Neuroscience. ,vol. 26, pp. 1889- 1894 ,(2007) , 10.1111/J.1460-9568.2007.05815.X
C. Nathan, Q.W. Xie, Regulation of biosynthesis of nitric oxide. Journal of Biological Chemistry. ,vol. 269, pp. 13725- 13728 ,(1994) , 10.1016/S0021-9258(17)36703-0
M.W.J. Cleeter, J.M. Cooper, V.M. Darley-Usmar, S. Moncada, A.H.V. Schapira, Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide FEBS Letters. ,vol. 345, pp. 50- 54 ,(1994) , 10.1016/0014-5793(94)00424-2
D J Stuehr, N S Kwon, C F Nathan, O W Griffith, P L Feldman, J Wiseman, N omega-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. Journal of Biological Chemistry. ,vol. 266, pp. 6259- 6263 ,(1991) , 10.1016/S0021-9258(18)38112-2