Remarks on M-ideals of compact operators

作者: Chong-Man Cho

DOI:

关键词:

摘要: A closed subspace J of a Banach space X is called an M-ideal in if the annihilator $J^\perp$ L-summand $X^*$. That is, there exists J' $X^*$ such that $X^* = J^\perp \oplus J'$ and $\left\ p + q \right\ \left\ \right\$ wherever $p \in J'$.

参考文章(7)
N. J. Kalton, $M$-ideals of compact operators Illinois Journal of Mathematics. ,vol. 37, pp. 147- 169 ,(1993) , 10.1215/IJM/1255987254
H Bang, F Odell, On the best compact approximation problem for operators between L p -spaces Journal of Approximation Theory. ,vol. 51, pp. 274- 287 ,(1987) , 10.1016/0021-9045(87)90040-2
R.R Smith, J.D Ward, M-ideal structure in Banach algebras Journal of Functional Analysis. ,vol. 27, pp. 337- 349 ,(1978) , 10.1016/0022-1236(78)90012-5
D. Werner, M-Ideals and the "Basic Inequality" Journal of Approximation Theory. ,vol. 76, pp. 21- 30 ,(1994) , 10.1006/JATH.1994.1002
Peter Harmand, Dirk Werner, Wend Werner, Banach spaces which are M-ideals in their biduals Transactions of the American Mathematical Society. ,vol. 283, pp. 101- 155 ,(1984) , 10.1007/BFB0084358
Asvald Lima, M-ideals of compact operators in classical Banach spaces. Mathematica Scandinavica. ,vol. 44, pp. 207- 217 ,(1979) , 10.7146/MATH.SCAND.A-11804