Chaos Driven PSO – On the Influence of Various CPRNG Implementations – An Initial Study

作者: Michal Pluhacek , Roman Senkerik , Ivan Zelinka , Donald Davendra

DOI: 10.1007/978-3-319-10759-2_24

关键词:

摘要: This paper presents deep study of the process implementation discrete chaotic maps as pseudo-random number generators (CPRNGs) for needs Particle Swarm Optimization (PSO) algorithm. There are several different ways CPRNG creation. addresses main issues (including examples and results comparison) may serve a very useful resource any future researchers.

参考文章(20)
Ivan Zelinka, SOMA—Self-organizing Migrating Algorithm Springer, Cham. pp. 3- 49 ,(2016) , 10.1007/978-3-540-39930-8_7
M. Karkulik, J.M. Melenk, Local high-order regularization and applications to hp-methods Computers & Mathematics With Applications. ,vol. 70, pp. 1606- 1639 ,(2015) , 10.1016/J.CAMWA.2015.06.026
B. V. Babu, Godfrey C. Onwubolu, New Optimization Techniques in Engineering ,(2004)
Rainer Storn, Kenneth Price, Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces Journal of Global Optimization. ,vol. 11, pp. 341- 359 ,(1997) , 10.1023/A:1008202821328
Francesco Mondada, Mauro Birattari, Thomas Stützle, Christian Blum, Luca Maria Gambardella, Marco Dorigo, Ant Colony Optimization and Swarm Intelligence ,(2008)
Julien Clinton Sprott, Chaos and time-series analysis ,(2001)
Ahmad Nickabadi, Mohammad Mehdi Ebadzadeh, Reza Safabakhsh, A novel particle swarm optimization algorithm with adaptive inertia weight soft computing. ,vol. 11, pp. 3658- 3670 ,(2011) , 10.1016/J.ASOC.2011.01.037
Michal Pluhacek, Roman Senkerik, Donald Davendra, Zuzana Kominkova Oplatkova, Ivan Zelinka, On the behavior and performance of chaos driven PSO algorithm with inertia weight Computers & Mathematics With Applications. ,vol. 66, pp. 122- 134 ,(2013) , 10.1016/J.CAMWA.2013.01.016
Michal Pluhacek, Roman Senkerik, Ivan Zelinka, Donald Davendra, Chaos PSO algorithm driven alternately by two different chaotic maps - An initial study congress on evolutionary computation. pp. 2444- 2449 ,(2013) , 10.1109/CEC.2013.6557862