Milnor and Tjurina numbers for smoothings of surface singularities

作者: Jonathan Wahl

DOI: 10.14231/AG-2015-014

关键词:

摘要: For an isolated hypersurface singularity $f=0$, the Milnor number $\mu$ is greater than or equal to Tjurina $\tau$ (the dimension of base semi-universal deformation), with equality if $f$ quasi-homogeneous. K. Saito proved converse. The same result true for complete intersections, but much harder. a Gorenstein surface $(V,0)$, difference $\mu - \tau$ can be defined whether not $V$ smoothable; it was in [23] that non-negative, and 0 iff $(V,0)$ We conjecture similar non-Gorenstein singularities. Here, must modified so independent any smoothing. This expression, involving cohomology exterior powers bundle logarithmic derivations on minimal good resolution, conjecturally one has quasi-homogeneity. prove "if" part; identify special cases where particularly interesting; verify some non-trivial cases; $\Q$Gorenstein smoothing when index cover hypersurface. interest regarding classification singularities rational homology disk smoothings, as [1], [18], [24].

参考文章(24)
Gert-Martin Greuel, On deformation of curves and a formula of deligne Springer, Berlin, Heidelberg. pp. 141- 168 ,(1982) , 10.1007/BFB0071281
Jonathan M. Wahl, A characterization of quasi-homogeneous Gorenstein surface singularities Compositio Mathematica. ,vol. 55, pp. 269- 288 ,(1985)
Gert-Martin Greuel, Joseph Steenbrink, On the topology of smoothable singularities Universität Kaiserslautern, Fachbereich Mathematik. ,(1981)
Keiichi Watanabe, Some remarks concerning Demazure’s construction of normal graded rings Nagoya Mathematical Journal. ,vol. 83, pp. 203- 211 ,(1981) , 10.1017/S0027763000019498
Ragnar-Olaf Buchweitz, Gert-Martin Greuel, The Milnor number and deformations of complex curve singularities Inventiones Mathematicae. ,vol. 58, pp. 241- 281 ,(1980) , 10.1007/BF01390254
Jonathan Wahl, Smoothings of normal surface singularities Topology. ,vol. 20, pp. 219- 246 ,(1981) , 10.1016/0040-9383(81)90001-X
Eduard Looijenga, Joseph Steenbrink, Milnor Number and Tjurina Number of Complete Intersections. Mathematische Annalen. ,vol. 271, pp. 121- 124 ,(1985) , 10.1007/BF01455800
Jonathan M. Wahl, Vanishing theorems for resolutions of surface singularities Inventiones Mathematicae. ,vol. 31, pp. 17- 41 ,(1975) , 10.1007/BF01389864
Jonathan Wahl, Walter D Neumann, Complete intersection singularities of splice type as universal abelian covers Geometry & Topology. ,vol. 9, pp. 699- 755 ,(2005) , 10.2140/GT.2005.9.699
Eduard Looijenga, Jonathan Wahl, QUADRATIC FUNCTIONS AND SMOOTHING SURFACE SINGULARITIES Topology. ,vol. 25, pp. 261- 291 ,(1986) , 10.1016/0040-9383(86)90044-3