Estimates on Green’s functions, localization and the quantum kicked rotor model

作者: J. Bourgain

DOI: 10.2307/3597190

关键词:

摘要: and phase space L2(1r). It has been conjectured by a number of authors (cf. [FGP], [Bel]) that for typical parameter values a, b, the wave function t satisfying equations (0.1), (0.2) will be almost periodic in time; hence f(t) (the Fourier transform) remains localized. We prove this here, assuming S small. Thus we have: THEOREM. For K stnall (a,b) o?>tside set small rneasure ( > O 0), following holds. Let 4! = W(t, x) solve (0 1), 2) let to 4!(0, suJgciently smooth on T. Then @ is an alrnost timbe, say as Hl(T)-valued map. In particular supt ll@(t)llHl

参考文章(9)
G. Casati, B. V. Chirikov, F. M. Izraelev, Joseph Ford, Stochastic behavior of a quantum pendulum under a periodic perturbation Stochastic Behaviour in Classical and Quantum Hamiltonian Systems. ,vol. 93, pp. 334- 352 ,(1979) , 10.1007/BFB0021757
S. Basu, On Bounding the Betti Numbers and Computing the Euler Characteristic of Semi-Algebraic Sets Discrete and Computational Geometry. ,vol. 22, pp. 1- 18 ,(1999) , 10.1007/PL00009443
Shmuel Fishman, D. R. Grempel, R. E. Prange, Chaos, Quantum Recurrences, and Anderson Localization Physical Review Letters. ,vol. 49, pp. 509- 512 ,(1982) , 10.1103/PHYSREVLETT.49.509
John B. Garnett, Bounded Analytic Functions ,(2010)
JEAN BELLISSARD, ANTON BOVIER, JEAN-MICHEL GHEZ, GAP LABELLING THEOREMS FOR ONE DIMENSIONAL DISCRETE SCHRÖDINGER OPERATORS Reviews in Mathematical Physics. ,vol. 4, pp. 1- 37 ,(1992) , 10.1142/S0129055X92000029
Saugata Basu, Richard Pollack, Marie-Françoise Roy, On the combinatorial and algebraic complexity of quantifier elimination Journal of the ACM. ,vol. 43, pp. 1002- 1045 ,(1996) , 10.1145/235809.235813
M. Gromov, Entropy, homology and semialgebraic geometry Séminaire Bourbaki. ,vol. 28, pp. 225- 240 ,(1986)