Provable compressed sensing quantum state tomography via non-convex methods

作者: Anastasios Kyrillidis , Amir Kalev , Dohyung Park , Srinadh Bhojanapalli , Constantine Caramanis

DOI: 10.1038/S41534-018-0080-4

关键词:

摘要: With nowadays steadily growing quantum processors, it is required to develop new quantum tomography tools that are tailored for high-dimensional systems. In this work, we describe …

参考文章(44)
Carlile Lavor, Márcia A. Gomes-Ruggiero, Osvaldo Jiménez Farias, Douglas S. Gonçalves, P. H. Souto Ribeiro, Local solutions of maximum likelihood estimation in quantum state tomography Quantum Information & Computation. ,vol. 12, pp. 775- 790 ,(2012) , 10.5555/2481580.2481584
David Gross, Yi-Kai Liu, Steven T. Flammia, Stephen Becker, Jens Eisert, Quantum state tomography via compressed sensing. Physical Review Letters. ,vol. 105, pp. 150401- ,(2010) , 10.1103/PHYSREVLETT.105.150401
Volkan Cevher, Quoc Tran-Dinh, Alp Yurtsever, A universal primal-dual convex optimization framework neural information processing systems. ,vol. 28, pp. 3150- 3158 ,(2015)
P.G. Kwiat, J.B. Altepeter, E.R. Jeffrey, Photonic State Tomography Advances In Atomic, Molecular, and Optical Physics. ,vol. 52, pp. 105- 159 ,(2005) , 10.1016/S1049-250X(05)52003-2
Yi-Kai Liu, Universal low-rank matrix recovery from Pauli measurements arXiv: Quantum Physics. ,(2011)
Elad Hazan, Sparse Approximate Solutions to Semidefinite Programs Lecture Notes in Computer Science. pp. 306- 316 ,(2008) , 10.1007/978-3-540-78773-0_27
Srinadh Bhojanapalli, Sujay Sanghavi, Anastasios Kyrillidis, Dropping Convexity for Faster Semi-definite Optimization arXiv: Machine Learning. ,(2015)
Ross Boczar, Mahdi Soltanolkotabi, Benjamin Recht, Max Simchowitz, Stephen Tu, Low-rank Solutions of Linear Matrix Equations via Procrustes Flow arXiv: Optimization and Control. ,(2015)
Ruoyu Sun, Zhi-Quan Luo, Guaranteed Matrix Completion via Nonconvex Factorization 2015 IEEE 56th Annual Symposium on Foundations of Computer Science. pp. 270- 289 ,(2015) , 10.1109/FOCS.2015.25