Fault-relevant Principal Component Analysis (FPCA) method for multivariate statistical modeling and process monitoring

作者: Chunhui Zhao , Furong Gao

DOI: 10.1016/J.CHEMOLAB.2014.01.009

关键词:

摘要: … For industrial processes, there are always some specific faults which are not easy to be detected by the conventional PCA algorithm since the monitoring models are defined based on …

参考文章(36)
Riccardo Muradore, Paolo Fiorini, A PLS-Based Statistical Approach for Fault Detection and Isolation of Robotic Manipulators IEEE Transactions on Industrial Electronics. ,vol. 59, pp. 3167- 3175 ,(2012) , 10.1109/TIE.2011.2167110
L. L. Kupper, K. E. Muller, D. G. Kleinbaum, Applied Regression Analysis and Other Multivariable Methods ,(1978)
Paul Nomikos, John F. MacGregor, Multivariate SPC Charts for Monitoring Batch Processes Technometrics. ,vol. 37, pp. 41- 59 ,(1995) , 10.1080/00401706.1995.10485888
Bhupinder. S. Dayal, John F. MacGregor, Improved PLS algorithms Journal of Chemometrics. ,vol. 11, pp. 73- 85 ,(1997) , 10.1002/(SICI)1099-128X(199701)11:1<73::AID-CEM435>3.0.CO;2-#
Cynthia A Lowry, Douglas C Montgomery, None, A review of multivariate control charts Iie Transactions. ,vol. 27, pp. 800- 810 ,(1995) , 10.1080/07408179508936797
Carlos F. Alcala, S. Joe Qin, Reconstruction-based contribution for process monitoring Automatica. ,vol. 45, pp. 1593- 1600 ,(2009) , 10.1016/J.AUTOMATICA.2009.02.027
Weihua Li, H.Henry Yue, Sergio Valle-Cervantes, S.Joe Qin, Recursive PCA for adaptive process monitoring Journal of Process Control. ,vol. 10, pp. 471- 486 ,(2000) , 10.1016/S0959-1524(00)00022-6
J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem Computers & Chemical Engineering. ,vol. 17, pp. 245- 255 ,(1993) , 10.1016/0098-1354(93)80018-I
Gang Li, S. Joe Qin, Donghua Zhou, Output Relevant Fault Reconstruction and Fault Subspace Extraction in Total Projection to Latent Structures Models Industrial & Engineering Chemistry Research. ,vol. 49, pp. 9175- 9183 ,(2010) , 10.1021/IE901939N