Butyrate and retinoic acid imprint mucosal-like dendritic cell development synergistically from bone marrow cells.

作者: Y. Qiang , J. Xu , C. Yan , H. Jin , T. Xiao

DOI: 10.1111/CEI.12990

关键词:

摘要: Accumulating data show that the phenotypes and functions of distinctive mucosal dendritic cells (DCs) in gut are regulated by retinoic acid (RA). Unfortunately, exact role butyrate RA-mediated DC differentiation has not been elucidated thoroughly to date. Mucosal-like cell was completed vitro culturing bone marrow with growth factors [granulocyte-macrophage colony-stimulating factor (GM-CSF/interleukin (IL)-4], RA and/or butyrate. The phenotypes, cytokine secretion, immune levels retinal dehydrogenase different DCs were detected using quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) flow cytometry, respectively. results showed RA-induced (RA-DCs) properties, including expression CD103 homing receptor α4 β7 , low proinflammatory secretion priming capability antigen-specific CD4+ T cells. Butyrate-treated RA-DCs (Bu-RA-DCs) decreased CD11c, but increased expression. Moreover, suppressed significantly Thus, have synergistic regulatory on differentiation, indicating homeostasis depends largely upon imprint subsets, both individually collectively.

参考文章(30)
R Zeng, M Bscheider, K Lahl, M Lee, E C Butcher, Generation and transcriptional programming of intestinal dendritic cells: essential role of retinoic acid. Mucosal Immunology. ,vol. 9, pp. 183- 193 ,(2016) , 10.1038/MI.2015.50
Gregg Duester, Families of retinoid dehydrogenases regulating vitamin A function FEBS Journal. ,vol. 267, pp. 4315- 4324 ,(2000) , 10.1046/J.1432-1327.2000.01497.X
Shivajanani Sivakumaran, Stephen Henderson, Sophie Ward, Pedro Santos E. Sousa, Teresa Manzo, Lei Zhang, Thomas Conlan, Terry K. Means, Maud D'Aveni, Olivier Hermine, Marie‐Thérèse Rubio, Ronjon Chakraverty, Clare L. Bennett, Depletion of CD11c+ cells in the CD11c.DTR model drives expansion of unique CD64+ Ly6C+ monocytes that are poised to release TNF-α European Journal of Immunology. ,vol. 46, pp. 192- 203 ,(2016) , 10.1002/EJI.201545789
Jian Tan, Craig McKenzie, Maria Potamitis, Alison N. Thorburn, Charles R. Mackay, Laurence Macia, The role of short-chain fatty acids in health and disease. Advances in Immunology. ,vol. 121, pp. 91- 119 ,(2014) , 10.1016/B978-0-12-800100-4.00003-9
N. Novak, J.-P. Allam, H. Betten, J. Haberstok, T. Bieber, The role of antigen presenting cells at distinct anatomic sites: they accelerate and they slow down allergies. Allergy. ,vol. 59, pp. 5- 14 ,(2004) , 10.1046/J.1398-9995.2003.00337.X
Emma K. Persson, Elin Jaensson, William W. Agace, The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets. Immunobiology. ,vol. 215, pp. 692- 697 ,(2010) , 10.1016/J.IMBIO.2010.05.013
A. L. MILLARD, P. M. MERTES, D. ITTELET, F. VILLARD, P. JEANNESSON, J. BERNARD, Butyrate affects differentiation, maturation and function of human monocyte‐derived dendritic cells and macrophages Clinical and Experimental Immunology. ,vol. 130, pp. 245- 255 ,(2002) , 10.1046/J.0009-9104.2002.01977.X
Nicholas Arpaia, Clarissa Campbell, Xiying Fan, Stanislav Dikiy, Joris van der Veeken, Paul deRoos, Hui Liu, Justin R. Cross, Klaus Pfeffer, Paul J. Coffer, Alexander Y. Rudensky, Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation Nature. ,vol. 504, pp. 451- 455 ,(2013) , 10.1038/NATURE12726
William W. Agace, Emma K. Persson, How vitamin A metabolizing dendritic cells are generated in the gut mucosa. Trends in Immunology. ,vol. 33, pp. 42- 48 ,(2012) , 10.1016/J.IT.2011.10.001
Elizabeth R. Mann, David Bernardo, Hafid Omar Al-Hassi, Nicholas R. English, Susan K. Clark, Neil E. McCarthy, Andrew N. Milestone, Stella A. Cochrane, Ailsa L. Hart, Andrew J. Stagg, Stella C. Knight, Human gut-specific homeostatic dendritic cells are generated from blood precursors by the gut microenvironment† Inflammatory Bowel Diseases. ,vol. 18, pp. 1275- 1286 ,(2012) , 10.1002/IBD.21893