Machine Learning applied to Wi-Fi fingerprinting: The experiences of the Ubiqum Challenge

作者: Jordi Rojo , Carmen Corvalan , Florian Unger , Sara Marin Lopez , Ignacio Soteras

DOI: 10.1109/IPIN.2019.8911761

关键词:

摘要: Wi-Fi Fingerprinting is widely adopted for smartphone-based indoor positioning systems due to the availability of already deployed infrastructure communications. The UJIIndoorLoc database contains data in a large environment covering three multi-tier buildings collected with multiple devices. Since evaluation set private, developers and researchers can still be evaluated under same conditions than participants 2015 EvAAL-ETRI competition. This paper shows results experiences such kind external based on competition provided by students "Data Analytics Machine Learning" program Ubiqum academy, who applied machine learning models they learnt during program. show that state-of-art Learning methods provide good results, but expertise problem needed.

参考文章(48)
Joaquín Torres-Sospedra, Raúl Montoliu, Sergio Trilles, Óscar Belmonte, Joaquín Huerta, Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems Expert Systems With Applications. ,vol. 42, pp. 9263- 9278 ,(2015) , 10.1016/J.ESWA.2015.08.013
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors Nature. ,vol. 323, pp. 696- 699 ,(1988) , 10.1038/323533A0
Joaquin Torres-Sospedra, Raul Montoliu, Adolfo Martinez-Uso, Joan P. Avariento, Tomas J. Arnau, Mauri Benedito-Bordonau, Joaquin Huerta, UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems international conference on indoor positioning and indoor navigation. pp. 261- 270 ,(2014) , 10.1109/IPIN.2014.7275492
Sinem Bozkurt, Gulin Elibol, Serkan Gunal, Ugur Yayan, A comparative study on machine learning algorithms for indoor positioning international symposium on innovations in intelligent systems and applications. pp. 1- 8 ,(2015) , 10.1109/INISTA.2015.7276725
Jerome H. Friedman, Greedy function approximation: A gradient boosting machine. Annals of Statistics. ,vol. 29, pp. 1189- 1232 ,(2001) , 10.1214/AOS/1013203451
Nir Friedman, Dan Geiger, Moises Goldszmidt, Bayesian Network Classifiers Machine Learning. ,vol. 29, pp. 131- 163 ,(1997) , 10.1023/A:1007465528199
Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, Torsten Hothorn, Bias in random forest variable importance measures: Illustrations, sources and a solution BMC Bioinformatics. ,vol. 8, pp. 25- 25 ,(2007) , 10.1186/1471-2105-8-25
Tin Kam Ho, Random decision forests international conference on document analysis and recognition. ,vol. 1, pp. 278- 282 ,(1995) , 10.1109/ICDAR.1995.598994
Jerome H. Friedman, Stochastic gradient boosting Computational Statistics & Data Analysis. ,vol. 38, pp. 367- 378 ,(2002) , 10.1016/S0167-9473(01)00065-2
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay, Scikit-learn: Machine Learning in Python Journal of Machine Learning Research. ,vol. 12, pp. 2825- 2830 ,(2011)