Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+N alloyed austenitic stainless steel

作者: L. Mosecker , D.T. Pierce , A. Schwedt , M. Beighmohamadi , J. Mayer

DOI: 10.1016/J.MSEA.2015.06.047

关键词:

摘要: Abstract Recently developed high-manganese stainless Fe–Cr–Mn–CN steels exhibit an exceptional combination of strength and ductility show great promise for structural applications. Understanding the relationships between temperature, stacking fault energy (SFE) strain-hardening behavior is critical alloying, design, further optimization these steels. The present study investigates influence temperature SFE on microstructural evolution to explain deformation mechanical properties austenitic Fe–14Cr–16Mn–0.3C–0.3N alloy. flow homogenous no serrations in stress occur during tensile range from −150 250 °C. Mechanical twinning formation (planar) dislocation substructures strongly work-hardening intermediate −40 45 °C (SFE 17 24 mJ m−2). In high interval 100 250 °C ranges 29 44 mJ m−2 initiation delayed leading reduced final stages strain-hardening. low regime 100 °C approximately 15 mJ m−2), eh.c.p.-martensite dominant secondary mechanism, contributing enhanced early slightly lower total elongations. yield studied alloy significantly larger exhibits greater sensitivity within thermal athermal motion compared conventional Fe–Mn–(Al)–C TWIP or steels, which may be attributed phenomena such as short ordering.

参考文章(98)
C.C. Bampton, I.P. Jones, M.H. Loretto, Stacking fault energy measurements in some austenitic stainless steels Acta Metallurgica. ,vol. 26, pp. 39- 51 ,(1978) , 10.1016/0001-6160(78)90200-6
H. Feichtinger, G. Stein, Melting of High Nitrogen Steels Materials Science Forum. pp. 261- 270 ,(1999) , 10.4028/WWW.SCIENTIFIC.NET/MSF.318-320.261
J. P. Hirth, J. Lothe, T. Mura, Theory of Dislocations (2nd ed.) Journal of Applied Mechanics. ,vol. 50, pp. 476- 477 ,(1983) , 10.1115/1.3167075
X.W. Zhou, M. Grujicic, Thermodynamic analysis of the short range order strengthening in FeNiCrN austenite Calphad-computer Coupling of Phase Diagrams and Thermochemistry. ,vol. 20, pp. 257- 272 ,(1996) , 10.1016/S0364-5916(96)00029-6
P. Müllner, C. Solenthaler, P. Uggowitzer, M.O. Speidel, On the effect of nitrogen on the dislocation structure of austenitic stainless steel Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 164, pp. 164- 169 ,(1993) , 10.1016/0921-5093(93)90655-X
Sang Won Lee, Jin Kyung Kim, Sung Kyu Kim, Kwang Geun Chin, Bruno C. De Cooman, Effect of N on Microstructure and Tensile Behavior of TWIP Steel Materials Science Forum. pp. 262- 265 ,(2010) , 10.4028/WWW.SCIENTIFIC.NET/MSF.654-656.262
L. Remy, A. Pineau, Twinning and strain-induced F.C.C. → H.C.P. transformation in the FeMnCrC system Materials Science and Engineering. ,vol. 28, pp. 99- 107 ,(1977) , 10.1016/0025-5416(77)90093-3
Dejan Djurovic, Bengt Hallstedt, Jörg von Appen, Richard Dronskowski, Thermodynamic assessment of the Fe–Mn–C system Calphad-computer Coupling of Phase Diagrams and Thermochemistry. ,vol. 35, pp. 479- 491 ,(2011) , 10.1016/J.CALPHAD.2011.08.002