A Burkholderia sacchari cell factory: production of poly-3-hydroxybutyrate, xylitol and xylonic acid from xylose-rich sugar mixtures.

作者: Rodrigo S. Raposo , M. Catarina M.D. de Almeida , M. da Conceição M.A. de Oliveira , M. Manuela da Fonseca , M. Teresa Cesário

DOI: 10.1016/J.NBT.2016.10.001

关键词:

摘要: Abstract Efficient production of poly-3-hydroxybutyrate (P(3HB)) based on glucose-xylose mixtures simulating different types lignocellulosic hydrolysate (LCH) was addressed using Burkholderia sacchari, a wild strain capable metabolizing both sugars and producing P(3HB). Carbon catabolite repression avoided by maintaining glucose concentration below 10 g/L. Xylose concentrations above 30 g/L were inhibitory for growth production. In fed-batch cultivations, pulse size feed addition rate controlled in order to reach high productivities efficient sugar consumptions. High xylose uptake P(3HB) productivity attained with glucose-rich (glucose/xylose ratio the feed = 1.5 w/w) feeding rates, while xylose-richer feeds (glucose/xylose = 0.8 w/w), lower is robust strategy avoid build-up medium. Xylitol observed medium 30–40 g/L. With featuring even glucose/xylose ratios, i.e. (glucose/xylose = 0.5), xylonic acid (a second byproduct) produced. This first report ability sacchari produce xylitol acid.

参考文章(29)
Thomas W. Jeffries, Utilization of xylose by bacteria, yeasts, and fungi Advances in Biochemical Engineering \/ Biotechnology. ,vol. 27, pp. 1- 32 ,(1983) , 10.1007/BFB0009101
M. Teresa F. Cesário, M. Catarina M. Dias de Almeida, Lignocellulosic Hydrolysates for the Production of Polyhydroxyalkanoates Microorganisms in Biorefineries. pp. 79- 104 ,(2015) , 10.1007/978-3-662-45209-7_4
Ariadna Fuente-Hernandez, Pierre-Olivier Corcos, Romain Beauchet, Jean-Michel Lavoie, Biofuels and Co-Products Out of Hemicelluloses InTech. ,(2013) , 10.5772/52645
Tracey Bowers, Alankar Vaidya, Dawn Alison Smith, Gareth Lloyd-Jones, Softwood hydrolysate as a carbon source for polyhydroxyalkanoate production Journal of Chemical Technology & Biotechnology. ,vol. 89, pp. 1030- 1037 ,(2014) , 10.1002/JCTB.4196
Marilyn G Wiebe, Yvonne Nygård, Merja Oja, Martina Andberg, Laura Ruohonen, Anu Koivula, Merja Penttilä, Mervi Toivari, None, A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae Applied Microbiology and Biotechnology. ,vol. 99, pp. 9439- 9447 ,(2015) , 10.1007/S00253-015-6878-5
Jiliang Ma, Linxin Zhong, Xinwen Peng, Runcang Sun, D-Xylonic acid: a solvent and an effective biocatalyst for a three-component reaction Green Chemistry. ,vol. 18, pp. 1738- 1750 ,(2016) , 10.1039/C5GC01727K
Ines C. Roberto, Maria G.A. Felipe, Ismael M. de Mancilha, Michele Vitolo, Sunao Sato, Silvio S. da Silva, Xylitol production by Candida guillermondii as an approach for the utilization of agroindustrial residues Bioresource Technology. ,vol. 51, pp. 255- 257 ,(1995) , 10.1016/0960-8524(94)00134-M
Juichi YOSHITAKE, Haruki ISHIZAKI, Mutsuo SHIMAMURA, Tomio IMAI, Xylitol Production by an Enterobacter Species Agricultural and biological chemistry. ,vol. 37, pp. 2261- 2267 ,(1973) , 10.1271/BBB1961.37.2261
Johanna Buchert, J�rgen Puls, Kaisa Poutanen, Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates Applied Microbiology and Biotechnology. ,vol. 28, pp. 367- 372 ,(1988) , 10.1007/BF00268197
M. Teresa Cesário, Rodrigo S. Raposo, M. Catarina M.D. de Almeida, Frederik van Keulen, Bruno S. Ferreira, M. Manuela R. da Fonseca, Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates New Biotechnology. ,vol. 31, pp. 104- 113 ,(2014) , 10.1016/J.NBT.2013.10.004