作者: L.C. Zhang , T.B. Sercombe
DOI: 10.4028/WWW.SCIENTIFIC.NET/KEM.520.226
关键词:
摘要: As many complex processing parameters are involved in Selective Laser Melting (SLM), an understanding of the scientific and technical aspects of the production route on the microstructural evolution during SLM process is required in order to obtain parts with near full density and desirable surface finish. Although the effects of the various processing parameters on the density of parts have been well documented, the effect of laser point distance on density and mechanical properties of the SLM-produced parts has not been widely studied. In this paper, we present the results of using SLM to produce biomedical beta Ti-24Nb-4Zr-8Sn components. Both the density and hardness of the material increases with increasing incident laser energy and reaches a near full density value of >99% without any post-processing. When the laser energy density input is high enough to fully melt powder, the laser point distance has no influence on the density or hardness of the samples. In contrast, at low energy densities, large point distances have been shown to be detrimental.