Lie group classification of second-order ordinary difference equations

作者: Vladimir Dorodnitsyn , Roman Kozlov , Pavel Winternitz

DOI: 10.1063/1.533142

关键词:

摘要: A group classification of invariant difference models, i.e., equations and meshes, is presented. In the continuous limit results go over into Lie’s second-order ordinary differential equations. The discrete model a three point one we show that it can be under Lie groups dimension 0⩽n⩽6.

参考文章(43)
William F. Ames, Symmetries, exact solutions, and conservation laws CRC Press. ,(1994)
J. Krause, L. Michel, Classification of the symmetries of ordinary differential equations Group Theoretical Methods in Physics. ,vol. 382, pp. 251- 262 ,(1991) , 10.1007/3-540-54040-7_116
V. Dorodnitsyn, P. Winternitz, Lie Point Symmetry Preserving Discretizations for Variable Coefficient Korteweg–de Vries Equations Nonlinear Dynamics. ,vol. 22, pp. 49- 59 ,(2000) , 10.1023/A:1008365224018
R Hernández Heredero, D Levi, P Winternitz, Symmetries of the discrete Burgers equation Journal of Physics A. ,vol. 32, pp. 2685- 2695 ,(1999) , 10.1088/0305-4470/32/14/009
D. Gómez-Ullate, S. Lafortune, P. Winternitz, Symmetries of discrete dynamical systems involving two species Journal of Mathematical Physics. ,vol. 40, pp. 2782- 2804 ,(1999) , 10.1063/1.532728
Roberto Floreanini, Luc Vinet, Lie symmetries of finite‐difference equations Journal of Mathematical Physics. ,vol. 36, pp. 7024- 7042 ,(1995) , 10.1063/1.531205