A Posteriori Error Estimations of Some Cell-Centered Finite Volume Methods

作者: Serge Nicaise

DOI: 10.1137/S0036142903437787

关键词:

摘要: This paper presents the natural framework to residual based a posteriori error estimation of some cell-centered finite volume methods for Laplace equation in $\R^d, d=2$ or 3. For that purpose we associate with solution reconstructed approximation, which is kind Morley interpolant. The then difference between exact and this estimator on jump normal tangential derivatives We prove equivalence discrete H1 seminorm estimator. Numerical tests confirm our theoretical results.

参考文章(23)
R. D. Lazarov, S. Z. Tomov, Adaptive finite volume element method for convection-diffusion-reaction problems in 3-D Scientific computing and applications. pp. 91- 106 ,(2001)
Raytcho Lazarov, Stanimire Tomov, A Posteriori Error Estimates for Finite Volume Element Approximations of Convection–Diffusion–Reaction Equations Computational Geosciences. ,vol. 6, pp. 483- 503 ,(2002) , 10.1023/A:1021247300362
J. A. Mackenzie, E. Süli, G. Warnecke, A posteriori error estimates for the cell-vertex finite volume method Notes on Numerical Fluid Mechanics (NNFM). pp. 221- 235 ,(1994) , 10.1007/978-3-663-14246-1_15
E. Dari, R. Duran, C. Padra, V. Vampa, A posteriori error estimators for nonconforming finite element methods Mathematical Modelling and Numerical Analysis. ,vol. 30, pp. 385- 400 ,(1996) , 10.1051/M2AN/1996300403851
Robert Eymard, Thierry Gallouët, Raphaèle Herbin, Finite Volume Methods Handbook of Numerical Analysis. ,vol. 7, pp. 713- 1018 ,(2000) , 10.1016/S1570-8659(00)07005-8
Serge Nicaise, Karim Djadel, Jalel Tabka, Some refined Finite volume methods for elliptic problems with corner singularities International Journal on Finite Volumes. ,vol. 1, pp. 1- 33 ,(2003)
L. S. D. Morley, The Triangular Equilibrium Element in the Solution of Plate Bending Problems The Aeronautical Quarterly. ,vol. 19, pp. 149- 169 ,(1968) , 10.1017/S0001925900004546
Thomas Sonar, Endre Süli, A dual graph-norm refinement indicator for finite volume approximations of the Euler equations Numerische Mathematik. ,vol. 78, pp. 619- 658 ,(1998) , 10.1007/S002110050328