Divisorial ideals and invertible ideals in a graded integral domain

作者: D.D Anderson , David F Anderson

DOI: 10.1016/0021-8693(82)90232-0

关键词:

摘要: Let R = Oapr R, be an integral domain graded by arbitrary torsionless grading monoid Z. In this paper we study v-ideals and invertible ideals of R. Section 3 determine necessary sufficient conditions for v-ideal to homogeneous whenever it contains a nonzero element. This condition is equivalent each Z finite type being equal xJ some x E R,, the quotient field J Either holds if integrally closed (but not conversely). special case that ‘-graded domain, u-ideal x.Z .Z only with respect positive degree. These results are then applied semigroup ring [X; r]. Our generalize work Querre [ 181 in polynomial case. 4 show many on u-ideals carry over ideals. 5 relationship between or If c inert extension, natural homomorphism $: Pic(R,) -+ HPic(R) isomorphism, where Picard group We investigate 4: + Pit(R) give

参考文章(19)
Claudio Pedrini, On the Ko of certain polynomial extensions Springer, Berlin, Heidelberg. pp. 92- 108 ,(1973) , 10.1007/BFB0073721
D. F. Anderson, D. D. Anderson, Generalized GCD domains Commentarii mathematici Universitatis Sancti Pauli = Rikkyo Daigaku sugaku zasshi. ,vol. 28, pp. 215- 221 ,(1980)
Tsit Yuen Lam, Serre's conjecture ,(1978)
Carlo Traverso, Seminormality and Picard group Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 24, pp. 585- 595 ,(1970)
Douglas Geoffrey Northcott, Lessons on rings, modules and multiplicities ,(1968)
Robert W Gilmer, Multiplicative ideal theory Queen's University. ,(1968)
David F. Anderson, Seminormal graded rings, II Journal of Pure and Applied Algebra. ,vol. 23, pp. 221- 226 ,(1982) , 10.1016/0022-4049(82)90097-4
Hyman Bass, M. Pavaman Murthy, Grothendieck Groups and Picard Groups of Abelian Group Rings The Annals of Mathematics. ,vol. 86, pp. 16- ,(1967) , 10.2307/1970360
D. G. Northcott, A generalization of a theorem on the content of polynomials Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 55, pp. 282- 288 ,(1959) , 10.1017/S030500410003406X