Clustering with a minimum spanning tree of scale-free-like structure

作者: Niina Päivinen

DOI: 10.1016/J.PATREC.2004.09.039

关键词:

摘要: In this study a novel approach to graph-theoretic clustering is presented. A algorithm which uses structure called scale-free minimum spanning tree presented and its performance compared with standard k-means methods. The results show that the proposed method potential procedure after some further analysis done.

参考文章(11)
Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition, Third Edition Academic Press, Inc.. ,(2006)
N. Paivinen, T. Gronfors, Minimum spanning tree clustering of EEG signals nordic signal processing symposium. pp. 149- 152 ,(2004)
G.C. Osbourn, R.F. Martinez, Empirically defined regions of influence for clustering analyses Pattern Recognition. ,vol. 28, pp. 1793- 1806 ,(1995) , 10.1016/0031-3203(95)00032-U
Albert-László Barabási, Réka Albert, Emergence of Scaling in Random Networks Science. ,vol. 286, pp. 509- 512 ,(1999) , 10.1126/SCIENCE.286.5439.509
G. Ergün, G.J. Rodgers, Growing random networks with fitness Physica A-statistical Mechanics and Its Applications. ,vol. 303, pp. 261- 272 ,(2002) , 10.1016/S0378-4371(01)00408-3
C. L. Blake, UCI Repository of machine learning databases www.ics.uci.edu/〜mlearn/MLRepository.html. ,(1998)
Andrej Mrvar, Vladimir Batagelj, Pajek - Program for Large Network Analysis ,(1999)
Duncan J. Watts, Steven H. Strogatz, Collective dynamics of small-world networks Nature. ,vol. 393, pp. 440- 442 ,(1998) , 10.1038/30918
Albert-László Barabási, Réka Albert, Hawoong Jeong, Mean-field theory for scale-free random networks Physica A-statistical Mechanics and Its Applications. ,vol. 272, pp. 173- 187 ,(1999) , 10.1016/S0378-4371(99)00291-5
Steven H. Strogatz, Exploring complex networks Nature. ,vol. 410, pp. 268- 276 ,(2001) , 10.1038/35065725