Simulation of Billiards and of Hard Body Fluids

作者: H. A. Posch , R. Hirschl

DOI: 10.1007/978-3-662-04062-1_11

关键词:

摘要: Recent computer simulations have contributed significantly to our understanding of the Lyapunov instability hard particle systems in equilibrium and nonequilibrium steady states. We discuss a very general method for computation full spectra apply it billiards many-body disk sphere systems. The velocity correlation function billiard flows is also discussed. For perturbed states associated with smallest exponents (in absolute magnitude) are shown reveal collective dynamic modes. study properties these modes provide examples two dimensions. It suggested that there connection familiar from fluctuating hydrodynamics. largest exponent, however, localized perturbations fluid.

参考文章(60)
William G. Hoover, Computational statistical mechanics ,(2012)
H. A. Posch, W. G. Hoover, NONEQUILIBRIUM MOLECULAR DYNAMICS OF CLASSICAL FLUIDS Springer Netherlands. pp. 527- 547 ,(1992) , 10.1007/978-94-011-2832-2_30
Denis J. Evans, Gary P. Morriss, Statistical Mechanics of Nonequilibrium Liquids ,(2010)
David Ruelle, Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics Journal of Statistical Physics. ,vol. 95, pp. 393- 468 ,(1999) , 10.1023/A:1004593915069
A. Latz, H. van Beijeren, J. R. Dorfman, Lyapunov Spectrum and the Conjugate Pairing Rule for a Thermostatted Random Lorentz Gas: Kinetic Theory Physical Review Letters. ,vol. 78, pp. 207- 210 ,(1997) , 10.1103/PHYSREVLETT.78.207
B. Friedman, R.F. Martin, Decay of the velocity autocorrelation function for the periodic Lorentz gas Physics Letters A. ,vol. 105, pp. 23- 26 ,(1984) , 10.1016/0375-9601(84)90554-1
Lj. Milanović, H. A. Posch, Wm. G. Hoover, Lyapunov instability of two-dimensional fluids: Hard dumbbells Chaos: An Interdisciplinary Journal of Nonlinear Science. ,vol. 8, pp. 455- 461 ,(1998) , 10.1063/1.166326
Reinhard Illner, Helmut Neunzert, The concept of irreversibility in the kinetic theory of gases Transport Theory and Statistical Physics. ,vol. 16, pp. 89- 112 ,(1987) , 10.1080/00411458708204298