Interactions of non-Abelian global strings

作者: Eiji Nakano , Muneto Nitta , Taeko Matsuura

DOI: 10.1016/J.PHYSLETB.2008.11.049

关键词:

摘要: Abstract Non-Abelian global strings are expected to form during the chiral phase transition. They have orientational zero modes in internal space, associated with vector-like symmetry SU ( N ) L + R broken presence of strings. The interaction among two parallel non-Abelian is derived for general relative modes, giving a generalization Magnus force. It shown that when orientations same, repulsive force reaches maximum, whereas orientation becomes no exists between For Abelian case we find finite volume correction known result. marginal instability previously η ′ discussed.

参考文章(45)
Xinmin Zhang, Tao Huang, Robert H. Brandenberger, Pion andη′strings Physical Review D. ,vol. 58, pp. 027702- ,(1998) , 10.1103/PHYSREVD.58.027702
T. W. B. Kibble, Cosmic strings reborn arXiv: Astrophysics. ,(2004)
E. P. S. Shellard, Alex Vilenkin, Cosmic Strings and Other Topological Defects ,(1995)
Romuald A. Janik, Maciej A. Nowak, Gábor Papp, Ismail Zahed, U(1) Problem at Finite Temperature New directions in quantum chromodynamics. ,vol. 494, pp. 408- 422 ,(1999) , 10.1063/1.1301690
Eiji Nakano, Muneto Nitta, Taeko Matsuura, Non-Abelian strings in high-density QCD: Zero modes and interactions Physical Review D. ,vol. 78, pp. 045002- ,(2008) , 10.1103/PHYSREVD.78.045002
Minoru Eto, Jarah Evslin, Kenichi Konishi, Giacomo Marmorini, Muneto Nitta, Keisuke Ohashi, Walter Vinci, Naoto Yokoi, On the moduli space of semilocal strings and lumps Physical Review D. ,vol. 76, pp. 105002- ,(2007) , 10.1103/PHYSREVD.76.105002
E.P.S. Shellard, Cosmic String Interactions Nuclear Physics. ,vol. 283, pp. 624- 656 ,(1987) , 10.1016/0550-3213(87)90290-2
Michael Kalb, P. Ramond, Classical direct interstring action Physical Review D. ,vol. 9, pp. 2273- 2284 ,(1974) , 10.1103/PHYSREVD.9.2273
Koichi Seo, Masanori Okawa, Akio Sugamoto, Dual transformation in non-Abelian gauge theories Physical Review D. ,vol. 19, pp. 3744- 3753 ,(1979) , 10.1103/PHYSREVD.19.3744