On the Spectral Clustering for Dynamic Data

作者: D. H. Peluffo-Ordóñez , J. C. Alvarado-Pérez , A. E. Castro-Ospina

DOI: 10.1007/978-3-319-18833-1_16

关键词:

摘要: Spectral clustering has shown to be a powerful technique for grouping and/or rank data as well proper alternative unlabeled problems. Particularly, it is suitable when dealing with pattern recognition problems involving highly hardly separable classes. Due its versatility, applicability and feasibility, this results appealing many applications. Nevertheless, conventional spectral approaches lack the ability process dynamic or time-varying data. Within framework, work presents an overview of techniques their extensions analysis.

参考文章(45)
D. Peluffo-Ordóñez, S. García-Vega, C. G. Castellanos-Domínguez, Kernel Spectral Clustering for Motion Tracking: A First Approach international work-conference on the interplay between natural and artificial computation. pp. 264- 273 ,(2013) , 10.1007/978-3-642-38637-4_27
Fabio A. González, David Bermeo, Laura Ramos, Olfa Nasraoui, On the Robustness of Kernel-Based Clustering iberoamerican congress on pattern recognition. pp. 122- 129 ,(2012) , 10.1007/978-3-642-33275-3_15
Diego Hernán Peluffo-Ordóñez, Sergio García-Vega, Andrés Marino Álvarez-Meza, César Germán Castellanos-Domínguez, Kernel Spectral Clustering for Dynamic Data iberoamerican congress on pattern recognition. pp. 238- 245 ,(2013) , 10.1007/978-3-642-41822-8_30
S. Molina-Giraldo, A. M. Álvarez-Meza, D. H. Peluffo-Ordoñez, G. Castellanos-Domínguez, Image Segmentation Based on Multi-Kernel Learning and Feature Relevance Analysis ibero-american conference on artificial intelligence. pp. 501- 510 ,(2012) , 10.1007/978-3-642-34654-5_51
Marina Meila, Jianbo Shi, A Random Walks View of Spectral Segmentation. international conference on artificial intelligence and statistics. ,(2001)
D. H. Peluffo-Ordóñez, C. Castro-Hoyos, Carlos D. Acosta-Medina, Germán Castellanos-Domínguez, Quadratic Problem Formulation with Linear Constraints for Normalized Cut Clustering iberoamerican congress on pattern recognition. pp. 408- 415 ,(2014) , 10.1007/978-3-319-12568-8_50
Jos De Brabanter, Tony Van Gestel, Joos Vandewalle, Bart De Moor, Johan A K Suykens, Least Squares Support Vector Machines ,(2002)
Samy Bengio, Joseph Keshet, Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods John Wiley & Sons. ,(2009)
Jihun Ham, Daniel D. Lee, Sebastian Mika, Bernhard Schölkopf, A kernel view of the dimensionality reduction of manifolds Twenty-first international conference on Machine learning - ICML '04. pp. 47- ,(2004) , 10.1145/1015330.1015417
R. L. Taylor, C. T. H. Baker, The Numerical Treatment of Integral Equations ,(1978)