Special Solutions of Huxley Differential Equation

作者: Zenonas Navickas , Minvydas Ragulskis , Liepa Bikulčienė

DOI: 10.3846/13926292.2011.579627

关键词:

摘要: Abstract The conditions when solutions of Huxley equation can be expressed in special form and the procedure finding exact are presented this paper. is an evolution that describes nerve propagation biology. It often useful to obtain a generalized solitary solution for fully understanding its physical meanings. shown produced by Exp-function method may not hold all initial conditions. proven analytical condition describing existence space (or even system's parameters) derived because question about omitted. proposed operator method, on contrary, brings load symbolic computations before structure identified. derivation based concept rank Hankel matrix constructed f...

参考文章(19)
Z. Navickas, Operator Method of Solving Nonlinear Differential Equations Lithuanian Mathematical Journal. ,vol. 42, pp. 387- 393 ,(2002) , 10.1023/A:1021730407361
Allan R. Willms, Deborah J. Baro, Ronald M. Harris-Warrick, John Guckenheimer, An improved parameter estimation method for Hodgkin-Huxley models. Journal of Computational Neuroscience. ,vol. 6, pp. 145- 168 ,(1999) , 10.1023/A:1008880518515
Z. Navickas, L. Bikulčiene, EXPRESSIONS OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS BY STANDARD FUNCTIONS Mathematical Modelling and Analysis. ,vol. 11, pp. 399- 412 ,(2006) , 10.3846/13926292.2006.9637327
R. Čiegis, N. Tumanova, Finite-difference schemes for parabolic problems on graphs Lithuanian Mathematical Journal. ,vol. 50, pp. 164- 178 ,(2010) , 10.1007/S10986-010-9077-1
Zenonas Navickas, Minvydas Ragulskis, How far one can go with the Exp-function method? Applied Mathematics and Computation. ,vol. 211, pp. 522- 530 ,(2009) , 10.1016/J.AMC.2009.01.074
Zenonas Navickas, Liepa Bikulciene, Minvydas Ragulskis, Generalization of Exp-function and other standard function methods Applied Mathematics and Computation. ,vol. 216, pp. 2380- 2393 ,(2010) , 10.1016/J.AMC.2010.03.083
R. Čiegis, N. Tumanova, Paralel Predictor-Corrector Schemes for Parabolic Problems on Graphs Computational methods in applied mathematics. ,vol. 10, pp. 275- 282 ,(2010) , 10.2478/CMAM-2010-0015
A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve The Journal of Physiology. ,vol. 117, pp. 500- 544 ,(1952) , 10.1113/JPHYSIOL.1952.SP004764
Xin-Wei Zhou, Exp-Function Method for Solving Huxley Equation Mathematical Problems in Engineering. ,vol. 2008, pp. 1- 7 ,(2008) , 10.1155/2008/538489