An Explicit Multi-Model Compressible Flow Formulation Based on the Full Potential Equation and the Euler Equations on 3D Unstructured Meshes∗

作者: Marcus Sarkis , Xiao-Chuan Cai , Marius Paraschivoiu

DOI:

关键词:

摘要: The development of a multi-model formulation to simulate three dimensional compressible flows on parallel computers is presented. goal reduce the overall time and memory required flow by using locally selected cheaper more computational efficient physical models without sacrificing global fidelity simulation. Our approach involves splitting domain into different fluid regions full potential model instead Euler or Navier-Stokes equations in where this approximation valid. We show numerically that solving equation irrotational not only but also improves accuracy; avoiding any numerical generation entropy. main considerations addressed paper are coupling discretization interface conditions between these domains. use fully unstructured finite volume for both equations, condition derived imposing discrete conservation laws control volumes shared regions. 3D transonic simulations around NACA0012 airfoil investigated. Numerical have sufficiently matured be considered accurate engineering design analysis. However, large scale simulations, response remains too software used as an interactive tool even lastest supercomputers. While computing reduces computation proportionally additional resource,

参考文章(21)
Lakshmi N. Sankar, Bala K. Bharadvaj, Fu-Lin Tsung, Three-dimensional Navier-Stokes/full-potential coupled analysis for viscous transonic flow AIAA Journal. ,vol. 31, pp. 1857- 1862 ,(1993) , 10.2514/3.11859
David P Young, Robin G Melvin, Michael B Bieterman, Forrester T Johnson, Satish S Samant, John E Bussoletti, A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics Journal of Computational Physics. ,vol. 92, pp. 1- 66 ,(1990) , 10.1016/0021-9991(91)90291-R
Charbel Farhat, Stéphane Lanteri, Simulation of compressible viscous flows on a variety of MPPs: computational algorithms for unstructured dynamic meshes and performance results Computer Methods in Applied Mechanics and Engineering. ,vol. 119, pp. 35- 60 ,(1994) , 10.1016/0045-7825(94)00075-1
M.O. Bristeau, O. Pironneau, R. Glowinski, J. Périaux, P. Perrier, G. Poirier, On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (II). Application to transonic flow simulations Computer Methods in Applied Mechanics and Engineering. ,vol. 51, pp. 363- 394 ,(1985) , 10.1016/0045-7825(85)90039-8
Bram van Leer, Towards the Ultimate Conservative Difference Scheme Journal of Computational Physics. ,vol. 135, pp. 229- 248 ,(1997) , 10.1006/JCPH.1997.5704
David P. Young, Robin G. Melvin, Michael B. Bieterman, Forrester T. Johnson, Satish S. Samant, GLOBAL CONVERGENCE OF INEXACT NEWTON METHODS FOR TRANSONIC FLOW International Journal for Numerical Methods in Fluids. ,vol. 11, pp. 1075- 1095 ,(1990) , 10.1002/FLD.1650110803
Xiao-Chuan Cai, William D. Gropp, David E. Keyes, Robin G. Melvin, David P. Young, Parallel Newton--Krylov--Schwarz Algorithms for the Transonic Full Potential Equation SIAM Journal on Scientific Computing. ,vol. 19, pp. 246- 265 ,(1998) , 10.1137/S1064827596304046
Russell M. Cummings, Yehia M. Rizk, Lewis B. Schiff, Neal M. Chaderjian, Navier-Stokes Predictions for the F-18 Wing and Fuselage at Large Incidence Journal of Aircraft. ,vol. 29, pp. 565- 574 ,(1992) , 10.2514/3.46203
Richard B. Pelz, Antony Jameson, Transonic flow calculations using triangular finite elements AIAA Journal. ,vol. 23, pp. 569- 576 ,(1985) , 10.2514/3.8952