Classification of EEG Signals for Motor Imagery based on Mutual Information and Adaptive Neuro Fuzzy Inference System

作者: Shereen A. El-aal , Rabie A. Ramadan , Neveen I. Ghali

DOI: 10.4018/IJSDA.2016100104

关键词:

摘要: Electroencephalogram EEG signals based Brain Computer Interface BCI is employed to help disabled people interact better with the environment. are recorded through system translate it control commands. There a large body of literature targeting feature extraction and classification for Motor Imagery tasks. imagery task have several features can be extracted use in classification. However, using more consume running time irrelevant redundant affect performance used classifier. This paper dedicated extracting best vector motor task. work suggests two selection methods on Mutual Information MI including Minimum Redundancy Maximal Relevance MRMR maximal MaxRel. Adaptive Neuro Fuzzy Inference System ANFIS classifier Subtractive clustering method utilized classifications. The suggested applied Competition III dataset IVa IVb II III.

参考文章(35)
Adham Atyabi, Martin H. Luerssen, Sean P. Fitzgibbon, David M. W. Powers, The impact of PSO based dimension reduction on EEG classification Brain Informatics. pp. 220- 231 ,(2012) , 10.1007/978-3-642-35139-6_21
Ahmad Taher Azar, Valentina E. Balas, Teodora Olariu, Classification of EEG-Based Brain–Computer Interfaces Advanced Intelligent Computational Technologies and Decision Support Systems. ,vol. 486, pp. 97- 106 ,(2014) , 10.1007/978-3-319-00467-9_9
Ahmad Taher Azar, Aboul Ella Hassanien, Brain-Computer Interfaces: Current Trends and Applications Springer. ,(2014)
Azar, Ahmad Taher, Adaptive Neuro-Fuzzy Systems InTech. ,(2010) , 10.5772/7220
Nik Khadijah Nik Aznan, Yeon-Mo Yang, Applying Kalman filter in EEG-Based Brain Computer Interface for Motor Imagery classification international conference on information and communication technology convergence. pp. 688- 690 ,(2013) , 10.1109/ICTC.2013.6675451
Ahmad Taher Azar, Overview of Type-2 Fuzzy Logic Systems International Journal of Fuzzy System Applications archive. ,vol. 2, pp. 1- 28 ,(2012) , 10.4018/IJFSA.2012100101
Andrea Kübler, Boris Kotchoubey, Jochen Kaiser, Jonathan R. Wolpaw, Niels Birbaumer, Brain-computer communication: unlocking the locked in. Psychological Bulletin. ,vol. 127, pp. 358- 375 ,(2001) , 10.1037/0033-2909.127.3.358
İnan Güler, Elif Derya Übeyli, Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients Journal of Neuroscience Methods. ,vol. 148, pp. 113- 121 ,(2005) , 10.1016/J.JNEUMETH.2005.04.013
D. Gutierrez, R. Salazar-Varas, EEG signal classification using time-varying autoregressive models and common spatial patterns international conference of the ieee engineering in medicine and biology society. ,vol. 2011, pp. 6585- 6588 ,(2011) , 10.1109/IEMBS.2011.6091624