Prediction error identification methods for stationary stochastic processes

作者: P. Caines

DOI: 10.1109/TAC.1976.1101304

关键词:

摘要: The strong consistency of a general class prediction error identification methods for stationary stochastic processes is demonstrated. In particular, the maximum likelihood method Gaussian [4], [5] and quadratic loss [1]-[3] follow as special cases result.

参考文章(16)
Lennart Ljung, On The Consistency of Prediction Error Identification Methods Mathematics in Science and Engineering. ,vol. 126, pp. 121- 164 ,(1976) , 10.1016/S0076-5392(08)60871-1
J. Rissanen, Recursive Identification of Linear Systems Siam Journal on Control. ,vol. 9, pp. 335- 341 ,(1971) , 10.1137/0309031
D. Mayne, A canonical model for identification of multivariable linear systems IEEE Transactions on Automatic Control. ,vol. 17, pp. 728- 729 ,(1972) , 10.1109/TAC.1972.1100108
M. Denham, Canonical forms for the identification of multivariable linear systems IEEE Transactions on Automatic Control. ,vol. 19, pp. 646- 656 ,(1974) , 10.1109/TAC.1974.1100708
P. Caines, J. Rissanen, Maximum likelihood estimation of parameters in multivariate Gaussian stochastic processes (Corresp.) IEEE Transactions on Information Theory. ,vol. 20, pp. 102- 104 ,(1974) , 10.1109/TIT.1974.1055155
R. E. Kalman, R. S. Bucy, New Results in Linear Filtering and Prediction Theory Journal of Basic Engineering. ,vol. 83, pp. 95- 108 ,(1961) , 10.1115/1.3658902
Lennart Ljung, On consistency and identifiability Mathematical Programming Studies. ,vol. 7081, pp. 169- 190 ,(1976) , 10.1007/BFB0120772
W. M. Wonham, On a Matrix Riccati Equation of Stochastic Control Siam Journal on Control. ,vol. 6, pp. 681- 697 ,(1968) , 10.1137/0306044