A demonstration that breast cancer recurrence can be predicted by neural network analysis.

作者: Peter M. Ravdin , Gary M. Clark , Susan G. Hilsenbeck , Marilyn A. Owens , Patricia Vendely

DOI: 10.1007/BF01811963

关键词:

摘要: Neural Network Analysis, a form of artificial intelligence, was successfully used to predict the clinical outcome node-positive breast cancer patients. A trained using prognostic information from 1008 During training, network received as input tumor hormone receptor status, DNA index and S-phase determination by flow cytometry, size, number axillary lymph nodes involved with tumor, age patient, well lengtl followup, relapse time relapse. The ability determine probability then validated in separate set 960 powerful Cox Regression Modeling inidentifying patients at high low risk for

参考文章(9)
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors Nature. ,vol. 323, pp. 696- 699 ,(1988) , 10.1038/323533A0
David R. Cox, Regression Models and Life-Tables Springer Series in Statistics. ,vol. 34, pp. 527- 541 ,(1992) , 10.1007/978-1-4612-4380-9_37
A. Ciampi, J.F. Lawless, S.M. McKinney, K. Singhal, Regression and recursive partition strategies in the analysis of medical survival data Journal of Clinical Epidemiology. ,vol. 41, pp. 737- 748 ,(1988) , 10.1016/0895-4356(88)90160-6
Henrik Bohr, Jakob Bohr, Søren Brunak, Rodney M.J. Cotterill, Benny Lautrup, Leif Nørskov, Ole H. Olsen, Steffen B. Petersen, Protein secondary structure and homology by neural networks The α-helices in rhodopsin FEBS Letters. ,vol. 241, pp. 223- 228 ,(1988) , 10.1016/0014-5793(88)81066-4
William L. McGuire, Atul K. Tandon, D. Craig Allred, Gary C. Chamness, Gary M. Clark, How to use prognostic factors in axillary node-negative breast cancer patients. Journal of the National Cancer Institute. ,vol. 82, pp. 1006- 1015 ,(1990) , 10.1093/JNCI/82.12.1006
Sidney J. Cutler, Fred Ederer, Maximum utilization of the life table method in analyzing survival Journal of Chronic Diseases. ,vol. 8, pp. 699- 712 ,(1958) , 10.1016/0021-9681(58)90126-7
Ning Qian, Terrence J. Sejnowski, Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology. ,vol. 202, pp. 865- 884 ,(1988) , 10.1016/0022-2836(88)90564-5
Gary M. Clark, Lynn G. Dressler, Marilyn A. Owens, George Pounds, Teri Oldaker, William L. McGuire, Prediction of Relapse or Survival in Patients with Node-Negative Breast Cancer by DNA Flow Cytometry New England Journal of Medicine. ,vol. 320, pp. 627- 633 ,(1989) , 10.1056/NEJM198903093201003
RJ William, DE Rumelhart, GE Hinton, Learning representations by back-propagation errors, nature London. ,vol. 323, ,(1986)